SAMS Memory Expansion Guide

Author: Lee Stewart

Introduction

SAMS and 32 KiB Expansion RAM (ER) cards are mutually exclusive. A SAMS card in the system will supply
the 32 KiB ER. It is important to note that there is no DSR on a SAMS card. The only consequence of setting
the card’s (CRU address = 1EQQh) bit 0 is that access to the SAMS mapper registers is enabled. After
powerup, the card’s 0 and 1 bits are cleared. This puts the SAMS card in transparent mode (see below) and
disables access to the mapper registers. Of the 16 mapper registers, only 8 are active. Though the SAMS
registers are only 8 bits (1 byte) to manage each bank’s 256 4-KiB pages of SAMS RAM, they are 16 bits
apart for two reasons:

1. They only respond to even addresses.
2. A SAMS card with more than 1 MiB RAM has the bits above 255 (0QFFh) tied to a latch that
selects a bank of 256 SAMS pages.

The mapper registers start at the beginning of the 4000h memory space, which is why they are only
accessible for reading/writing by setting the card’s bit @. This is typically thought of as turning on the card
for access to the 8-KiB memory space, 4000h. .5FFFh. Each SAMS register manages the mapping of a 4-
KiB SAMS page to a 4-KiB window of CPU RAM. Each RAM window starts on a 4-KiB boundary of the
TMS9900’s 64-KiB memory space. Table 1 shows the SAMS mapper registers and the memory windows to
which they map SAMS pages (unavailable SAMS mapper registers and memory windows are shaded).

Table 1: SAMS Mapper Registers and their Expansion RAM windows

SAMS Mapper Register Memory
Number Address X:I:‘(::::
0 4000h 0000h
1 4002h 1000h
2 4004h 2000h
3 4006h 3000h
4 4008h 4000h
5 400Ah 5000h
6 400Ch 6000h
7 400Eh 7000h
8 4010h 8000h
9 4012h 9000h
10 4014h A0OOh
11 4016h BOOOh
12 4018h Co00h
13 401Ah DOOOh
14 401Ch =0]o]o]y!
15 401Eh FOOOh

Transparent Mode

Transparent mode is the powerup mode, i.e., default mode, for the SAMS card. This mode is in effect when
the card’s bit 1 is cleared (SBZ 1). Transparent mode is identical to mapping a SAMS bank 0 page,
numerically equivalent to said SAMS mapper register number, to a mapper register’s ER window, as shown
in Table 2. The programmer should initialize the SAMS card to this mapping before leaving transparent
mode to avoid unpleasant surprises.

Table 2: SAMS Transparent Mode Mapping to Expansion RAM

SAMS Memory

SAMS (Bank 0) Window

Register # Page # Address
2 2 2000h
3 3 3000h
10 10 A0OOh
11 11 BOOOh
12 12 CO00h
13 13 DOOOh
14 14 EQOOh
15 15 FOOOh

Mapping Mode

Mapping mode is enabled by setting bit 1 (SBO 1). Changing this mode bit does not require enabling
access to the mapper registers (bit 0). Mapped SAMS memory is also always available when bit 1 is set
regardless of the state of bit . SAMS memory should be initialized to the transparent-mode mapping of
Table 2 before entering mapping mode to avoid accidentally mapping out of a working program.

Mapping SAMS Pages

To map a SAMS page to an ER window, its bank and page numbers are written via a single MOV (16-bit
word) to the SAMS register of the relevant ER window. Because the MUX circuitry for the 8-bit PEB bus
writes a word in LSB-MSB order and an 8-bit SAMS register only responds to an even address, both bytes are
written to the 8-bit SAMS register, with only the MSB surviving the transfer (more later). This means that
the SAMS page must be in the MSB. Because the bank latch only responds to the LSB of the MOV, the bank
number must appear in the LSB.

I think it is simpler to manage SAMS memory without considering the bank/page hierarchy. Though I still
use “page” to describe each 4 KiB segment of SAMS memory in fbForth, I will use “segment” for these
degenerate (non-hierarchical) pages in this discussion to avoid confusion. Because a bank can contain
only 256 pages (0. .255), the highest page number fills exactly 1 byte. This allows the “segment” idea to
work because adding 1 to segment 255 (0OFFh or bank 0, page 255) is segment 256 (0100h or bank 1,
page 0). Here are a few segments with their corresponding bank/page representations:

Segment
Segment
Segment
Segment

(ONONONONO)

255: 00FFh (bank
256: 0100h (bank
400: 0190h (bank
511: 01FFh (bank

0, page 255)
1, page 0)
1, page 144)
1, page 255)

Segment 3119: OC2Fh (bank 12, page 47)

® Segment 4095: OFFFh (bank 15, page 255) <--highest possible with current SAMS circuitry
® Segment 8191: 1FFFh (bank 31, page 255) <--only possible in the Classic99 emulator

To write such a segment word to a SAMS mapper register requires swapping bytes before the MOV to

properly effect the desired mapping.

The procedure for mapping a SAMS segment to an ER window, e.g., segment 400 to AOOQh, is as follows:
1. Set the CRU register (R12) to 1EQQh, the address of the SAMS card: LI R12,>1E00

2. Put segment to map into a CPU register, e.g., RO: LI RO, 400

3. Swap bytes for writing to SAMS mapper register: SWPB RO

4. Enable access to mapper registers by setting bit 0: SBO 0

5. Write RO to SAMS mapper register 10: MOV RO,@>4014
6. Disable access to mapper registers by clearing bit 0: SBZ 0

7. Enable mapping (if not yet enabled) by setting bit 1: SBO 1

Reading the Mapper Registers

You can read the value in a SAMS mapper register with the MOV instruction, but, given that an 8-bit SAMS
register only responds to an even address and that its mapped bank # (MSB of segment # before swapping
bytes) is not stored, the value returned will have a copy of its page # (LSB of segment # before swapping
bytes) in both bytes. This means that by reading a SAMS register, you can only ever retrieve the mapped
segment’s page #, never its bank #. For example, pointing SAMS mapper register 3 (ER window = 3000h)

to segment 1841 (0731h) with

LI R12,>1E00
LI RO,>0731

SWPB RO

SBO 0

MOV RO,@>4006
SBZ 0

when read back with
LI R12,>1E00

SBO 0
MOV @>4006,R0
SBZ 0

set SAMS card CRU address

load segment 1841 (>0731)

swap bytes to >3107 for SAMS mapping

enable access to SAMS mapper registers

to SAMS mapper reg 3 for RAM window at >3000
disable access to SAMS mapper registers

set SAMS card CRU address

enable access to SAMS mapper registers
value in SAMS mapper reg 3 to RO
disable access to SAMS mapper registers

will return 3131h in RO. That said, I should note that the Classic99 emulator does, in fact, return the
value previously written and in the same order, viz., in page#-bank# order. Consequently, the above
example will return 3107h in RO in Classic99.

TMS9900 Assembly Language Code (ALC) Routines

The following ALC routines are slightly modified from the actual routines I use in fbForth to manage
SAMS memory:

SMSINI—Initialize SAMS card

KRR AAhkA kA kA hkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkkhkhkkhkkhkhkkhkkhkhkhkkhkkhkkkhkkhkkkhkkhkkkhkkhkkhkkkkkx

*xxxx%x SMSINI [SAMS card initialization routine] *xxkkkkkkkkxrkkhkhkkx
KRR AKRAA KRR AR A AR AR A AR A AR A AR Ak Ak Ak kA hkhkhkkhkhkhkhkkhkkhkhkhkkhkkhkkkhkkhkhkkkhkkhkkhkhkkkhkkkkkx

* k% * k%
***x Originally ported from TurboForth code courtesy of Mark Wills ***
*** and modified to explicitly set pages to power-up defaults, KKk
**x yiz., pages >0002, >0003, >000A..>000F mapped to CPU RAM *kk
**xx >2000, >3000, >A000..>F000, respectively. KKk
*k*k * k%
*** This routine ends with SAMS mapping enabled, i.e., bit 1 set. ***
*k*k * k%
**%* CAUTION: XAK
*kk This routine should be run from memory that is unaffected ***
*kk by SAMS mapping (ROM, Scratchpad RAM, ...) or with SAMS *kx
*kk mapping disabled prior to loading, as at powerup. KKk
* k% * k%

khkkkhkkkkkhkkhkhkhkkhkkhkkkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkhkkhkkhkkkhkkhkkkkkkkhkkkkhkkhkkkkk

SMSINI LI R12,>1E00 CRU address of SAMS card
SBO 0 enable access to mapper registers
SBZ 1 disable mapping while we set it up
LI RO,>4004 SAMS mapper register 2 for RAM >2000
LI R1,>0200 map SAMS page >0002...
MOV R1,*RO+ ...into RAM >2000..INCT to SAMS reg 3
LI R1,>0300 map SAMS page >0003...
MOV R1,*R0O ...into RAM >3000
*
* Now set up the banks for high memory...
*
LI R0,>4014 SAMS mapper register 10 for RAM >A000
LI R1,>0A00 start loop with SAMS page >000A
LI R2,6 loop count
SMSIN2 MOV R1,*R0O+ map next SAMS page..INCT to next SAMS reg
AI R1,>0100 INC SAMS page
DEC R2 finished?
JNE SMSIN2 loop if not
SBO 1 enable mapping
SBZ 0 lock the SAMS mapper registers
RT return to caller

SMSCHK—Check for Presence of SAMS Card

*

*++ SAMS flag (SAMSFL)

Kt Value in SAMSFL is only relevant after running SMSINI.

* 4+ Its value reflects the highest available 4-KiB SAMS page.
*++ A value of 0, of course, reflects no SAMS card.

*

SAMSFL BSS 2 SAMS flag

KAKAKKkA KRRk KA AkA kA Ak A hkkhkhkhkhkkhkkhkhkkhkkhkkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkkkhkhkkkhkkhkkhkkhkkhkkkkkk

*kxkkx*x SMSCHK

[Check for presence of SAMS card] *kxkxkkkkkkkkkkkkrkrkrrx

KEAKAKRhkARkAkAkhkAhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkhkkhkkhkkkhkkhkkkhkkhkkhkkhkkkkhkkkkk

* k%

* k%

*%*x SAMS flag (SAMSFL) will be set to highest available page #. KKk

* Kk

*kk

*%*x A check-value of >994A is written to the starting address of *x*x*
***x the RAM window at >EQ00 before starting the test loop. The *kk
% test loop will start with the highest possible amount of SAMS *
***x memory (32 MiB), proceeding by halving the range until 128 *okk

**x*% KiB 1s reached.

128 KiB is assumed to be the lowest viable *hx

**%* SAMS. The actual page tested will be >000E higher than the KKk
*** lowest page in the upper half of the range. To test, map *kk
%*x >000E + lowest page in upper half of SAMS range to >E000. For *
%% 32 MiB, this i1s >100E. We initially store >0010 (LSB,MSB) in ***
***x R3 to allow a circular right shift each round before MOVing ***
***x to RO to then add >0EO0 (LSB,MSB) for the next test. If the *kk
x test fails at >001E, the last viable SAMS (128 KiB), R3 will *
***x go to >0800, at which point the loop exits, setting R3 to 0, ***

*** effectively reporting "no SAMS". KKk
* k% * k%
*** This routine should only be run after running SMSINI, which ***
**x insures that SAMS memory is mapped as in transparent mode. Kok ok
*** This routine presumes that mapping is enabled, which is the ***
*** case after running SMSINI. KKk
* k% * k%

KAKAKRhkARkAkAkAkAhkkhkhkAkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkkhkhkhkkhkkhkhkhkkhkkhkhkkhkkhkkkhkkhkkhkkhkkhkkhkkkkk

* Set up SAMS check.

*

SMSCHK LI

MoV
*

* Classic99 emulator can

*

LI
LI
SMSCK2 MoV
Al
SBO
MoV
SBZ
C
JINE
SRC
CI

R2,>994A
R2,@>E000

R3,>0010
R12,>1E00
R3,R0
RO,>0E00
0
RO,@401C
0
@>E000,R2
SMSXT1
R3,1
R3,>0800

check-value
check-value to check-location

do 32 MiB

lowest page # in upper half of SAMS to R3 (LSB,MSB)
CRU address of SAMS

lowest page in upper half of SAMS range

get >000E pages higher

enable SAMS mapper registers

poke SAMS mapper register 14 for RAM >E000
disable SAMS mapper registers

examine check-location for test value

exit if SAMS mapped, i.e., no match

shift right circularly to halve the SAMS range
too far?

INE SMSCK2
CLR R3
IMP SMSXT2
SMSXT1 SWPB R3
SLA R3,1
DEC R3
SMSXT2 MOV R3,@SAMSFL
JEQ SMSEND

* > % X

LI RO,>0E00
SBO 0
MOV RO,@401C
SBZ 0

SMSEND RT

no..try SAMS half the size of last pass
yes..no SAMS, so set flag to 0

we're outta here

restore page #

double value (highest page # + 1)

decrement to highest page #

save SAMS flag

if no SAMS, no need to restore default mapping

Remap default SAMS page >0E to RAM >E000.
R12 should still have correct CRU address (>1E00).

load SAMS page >000E

enable SAMS mapper registers

poke SAMS mapper register 14 for RAM >EQ00
disable SAMS mapper registers

return to caller

MAP—Map a SAMS Page to a 4-KiB CPU RAM Window

AAKA KA AR AR K A A KR A A KA A A AR A A Ak ARk A Ak Ak hkhkkhkhkkhkhkkhkkkhkkhkhkkhkhkkhkhkkhkkkhkkhkkkhkkk

*xkkx*x MAP [SAMS page_mapping routine] KARkAKRKkKAKKR KKKk kAR kA khkAkkkkkk*x
KAKKAKK A KK A KRR KKK KKK KKK KKK KA KA A K KA KKK A AA AR KRR AR A R AR R A Ak Rk Ak kkkhkkkkkkkk

* k% * k%
*** Qriginally ported from TurboForth code courtesy of Mark Wills ***
*** and modified to handle 128 KiB..32 MiB. *kx
*k*k * k%
**x* Tnputs... *okx
*okx R1: Address of RAM mapping window, which should be a valid ***
*hx address on a 4K boundary (e.g., >2000, >3000, >A000, Kk ok
kK >B000, >CO00, >DO0OO, >E000, >FO00). R1 value is forced **x
*kx to a 4-KiB boundary by virtue of the SRL instruction *kk
*kk at the start of the routine and the fact that writing ***
*kx to a SAMS register address ignores the rightmost bit *kk
*kok (LSb) of the address. KKk
KKk R2: SAMS page # to map to above RAM window. R2 should be a ***
*kk number between ® and SAMSFL (maximum possible page of **x*
*kk current SAMS card. KKk
* k% * k%
%x Tt is presumed that mapping mode is set, so nothing is done *
**% with SAMS card bit 1 in this routine. *kk
*k*k * k%

*%*x Tt 1s a good idea to check whether the SAMS page about to be ***
%* mapped is higher than SAMSFL prior to calling this routine or *
x add that error check to the MAP routine itself. Code similar *

**%* to the following would do the trick: KKk
* k% * k%
*kk C R2,@SAMSFL requested SAMS page too high? KKk
*xk JH ERROR_HANDLER yes..deal with the error *kk
* k% * k%

KEAKAKAA KRRk K AkA kA A hk KAk Akhkhkhkkhkkhkhkkhkhkhkkhkkhkkhkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkhkkkkk

MAP SRL R1,11 0-based location on card of SAMS register
AI R1,>4000 address on card of SAMS register
SWPB R2 reverse byte order of page for SAMS register
LI R12,>1E00 CRU address of SAMS
SBO 0 enable SAMS mapper registers
MOV R2,*R1 poke SAMS mapper register (LSb ignored)
SBZ 0 disable SAMS mapper registers
RT return to caller

	SAMS Memory Expansion Guide
	Author: Lee Stewart
	Introduction
	Transparent Mode
	Mapping Mode
	Mapping SAMS Pages
	Reading the Mapper Registers
	TMS9900 Assembly Language Code (ALC) Routines
	SMSINI—Initialize SAMS card
	SMSCHK—Check for Presence of SAMS Card
	MAP—Map a SAMS Page to a 4-KiB CPU RAM Window

