
SAMS Memory Expansion Guide

Author: Lee Stewart

Introduction
SAMS and 32 KiB Expansion RAM (ER) cards are mutually exclusive. A SAMS card in the system will supply
the 32 KiB ER. It is important to note that there is no DSR on a SAMS card. The only consequence of setting
the card’s (CRU address = 1E00h) bit 0 is that access to the SAMS mapper registers is enabled. After
powerup, the card’s 0 and 1 bits are cleared. This puts the SAMS card in transparent mode (see below) and
disables access to the mapper registers. Of the 16 mapper registers, only 8 are active. Though the SAMS
registers are only 8 bits (1 byte) to manage each bank’s 256 4-KiB pages of SAMS RAM, they are 16 bits
apart for two reasons:

1. They only respond to even addresses.
2. A SAMS card with more than 1 MiB RAM has the bits above 255 (00FFh) tied to a latch that

selects a bank of 256 SAMS pages.

The mapper registers start at the beginning of the 4000h memory space, which is why they are only
accessible for reading/writing by setting the card’s bit 0. This is typically thought of as turning on the card
for access to the 8-KiB memory space, 4000h..5FFFh. Each SAMS register manages the mapping of a 4-
KiB SAMS page to a 4-KiB window of CPU RAM. Each RAM window starts on a 4-KiB boundary of the
TMS9900’s 64-KiB memory space. Table 1 shows the SAMS mapper registers and the memory windows to
which they map SAMS pages (unavailable SAMS mapper registers and memory windows are shaded).

Table 1: SAMS Mapper Registers and their Expansion RAM windows

SAMS Mapper Register Memory
Window
AddressNumber Address

0 4000h 0000h

1 4002h 1000h

2 4004h 2000h

3 4006h 3000h

4 4008h 4000h

5 400Ah 5000h

6 400Ch 6000h

7 400Eh 7000h

8 4010h 8000h

9 4012h 9000h

10 4014h A000h

11 4016h B000h

12 4018h C000h

13 401Ah D000h

14 401Ch E000h

15 401Eh F000h

1

Transparent Mode
Transparent mode is the powerup mode, i.e., default mode, for the SAMS card. This mode is in effect when
the card’s bit 1 is cleared (SBZ 1). Transparent mode is identical to mapping a SAMS bank 0 page,
numerically equivalent to said SAMS mapper register number, to a mapper register’s ER window, as shown
in Table 2. The programmer should initialize the SAMS card to this mapping before leaving transparent
mode to avoid unpleasant surprises.

Table 2: SAMS Transparent Mode Mapping to Expansion RAM

SAMS
Register #

SAMS
(Bank 0)
Page #

Memory
Window
Address

2 2 2000h

3 3 3000h

10 10 A000h

11 11 B000h

12 12 C000h

13 13 D000h

14 14 E000h

15 15 F000h

Mapping Mode
Mapping mode is enabled by setting bit 1 (SBO 1). Changing this mode bit does not require enabling
access to the mapper registers (bit 0). Mapped SAMS memory is also always available when bit 1 is set
regardless of the state of bit 0. SAMS memory should be initialized to the transparent-mode mapping of
Table 2 before entering mapping mode to avoid accidentally mapping out of a working program.

Mapping SAMS Pages
To map a SAMS page to an ER window, its bank and page numbers are written via a single MOV (16-bit
word) to the SAMS register of the relevant ER window. Because the MUX circuitry for the 8-bit PEB bus
writes a word in LSB-MSB order and an 8-bit SAMS register only responds to an even address, both bytes are
written to the 8-bit SAMS register, with only the MSB surviving the transfer (more later). This means that
the SAMS page must be in the MSB. Because the bank latch only responds to the LSB of the MOV, the bank
number must appear in the LSB.

I think it is simpler to manage SAMS memory without considering the bank/page hierarchy. Though I still
use “page” to describe each 4 KiB segment of SAMS memory in fbForth, I will use “segment” for these
degenerate (non-hierarchical) pages in this discussion to avoid confusion. Because a bank can contain
only 256 pages (0..255), the highest page number fills exactly 1 byte. This allows the “segment” idea to
work because adding 1 to segment 255 (00FFh or bank 0, page 255) is segment 256 (0100h or bank 1,
page 0). Here are a few segments with their corresponding bank/page representations:

 Segment 255: 00FFh (bank 0, page 255)
 Segment 256: 0100h (bank 1, page 0)
 Segment 400: 0190h (bank 1, page 144)
 Segment 511: 01FFh (bank 1, page 255)
 Segment 3119: 0C2Fh (bank 12, page 47)

2

 Segment 4095: 0FFFh (bank 15, page 255) <--highest possible with current SAMS circuitry
 Segment 8191: 1FFFh (bank 31, page 255) <--only possible in the Classic99 emulator

To write such a segment word to a SAMS mapper register requires swapping bytes before the MOV to
properly effect the desired mapping.

The procedure for mapping a SAMS segment to an ER window, e.g., segment 400 to A000h, is as follows:

1. Set the CRU register (R12) to 1E00h, the address of the SAMS card: LI R12,>1E00
2. Put segment to map into a CPU register, e.g., R0: LI R0,400
3. Swap bytes for writing to SAMS mapper register: SWPB R0
4. Enable access to mapper registers by setting bit 0: SBO 0
5. Write R0 to SAMS mapper register 10: MOV R0,@>4014
6. Disable access to mapper registers by clearing bit 0: SBZ 0
7. Enable mapping (if not yet enabled) by setting bit 1: SBO 1

Reading the Mapper Registers
You can read the value in a SAMS mapper register with the MOV instruction, but, given that an 8-bit SAMS
register only responds to an even address and that its mapped bank # (MSB of segment # before swapping
bytes) is not stored, the value returned will have a copy of its page # (LSB of segment # before swapping
bytes) in both bytes. This means that by reading a SAMS register, you can only ever retrieve the mapped
segment’s page #, never its bank #. For example, pointing SAMS mapper register 3 (ER window = 3000h)
to segment 1841 (0731h) with

LI R12,>1E00 set SAMS card CRU address
LI R0,>0731 load segment 1841 (>0731)
SWPB R0 swap bytes to >3107 for SAMS mapping
SBO 0 enable access to SAMS mapper registers
MOV R0,@>4006 to SAMS mapper reg 3 for RAM window at >3000
SBZ 0 disable access to SAMS mapper registers

when read back with

LI R12,>1E00 set SAMS card CRU address
SBO 0 enable access to SAMS mapper registers
MOV @>4006,R0 value in SAMS mapper reg 3 to R0
SBZ 0 disable access to SAMS mapper registers

will return 3131h in R0. That said, I should note that the Classic99 emulator does, in fact, return the
value previously written and in the same order, viz., in page#-bank# order. Consequently, the above
example will return 3107h in R0 in Classic99.

3

TMS9900 Assembly Language Code (ALC) Routines
The following ALC routines are slightly modified from the actual routines I use in fbForth to manage
SAMS memory:

SMSINI—Initialize SAMS card

****** SMSINI [SAMS card initialization routine] *******************

*** ***
*** Originally ported from TurboForth code courtesy of Mark Wills ***
*** and modified to explicitly set pages to power-up defaults, ***
*** viz., pages >0002, >0003, >000A..>000F mapped to CPU RAM ***
*** >2000, >3000, >A000..>F000, respectively. ***
*** ***
*** This routine ends with SAMS mapping enabled, i.e., bit 1 set. ***
*** ***
*** CAUTION: ***
*** This routine should be run from memory that is unaffected ***
*** by SAMS mapping (ROM, Scratchpad RAM, ...) or with SAMS ***
*** mapping disabled prior to loading, as at powerup. ***
*** ***

SMSINI LI R12,>1E00 CRU address of SAMS card
 SBO 0 enable access to mapper registers
 SBZ 1 disable mapping while we set it up
 LI R0,>4004 SAMS mapper register 2 for RAM >2000
 LI R1,>0200 map SAMS page >0002...
 MOV R1,*R0+ ...into RAM >2000..INCT to SAMS reg 3
 LI R1,>0300 map SAMS page >0003...
 MOV R1,*R0 ...into RAM >3000
*
* Now set up the banks for high memory...
*
 LI R0,>4014 SAMS mapper register 10 for RAM >A000
 LI R1,>0A00 start loop with SAMS page >000A
 LI R2,6 loop count
SMSIN2 MOV R1,*R0+ map next SAMS page..INCT to next SAMS reg
 AI R1,>0100 INC SAMS page
 DEC R2 finished?
 JNE SMSIN2 loop if not
 SBO 1 enable mapping
 SBZ 0 lock the SAMS mapper registers
 RT return to caller

4

SMSCHK—Check for Presence of SAMS Card
*
*++ SAMS flag (SAMSFL)
*++ Value in SAMSFL is only relevant after running SMSINI.
*++ Its value reflects the highest available 4-KiB SAMS page.
*++ A value of 0, of course, reflects no SAMS card.
*
SAMSFL BSS 2 SAMS flag

****** SMSCHK [Check for presence of SAMS card] ********************

*** ***
*** SAMS flag (SAMSFL) will be set to highest available page #. ***
*** ***
*** A check-value of >994A is written to the starting address of ***
*** the RAM window at >E000 before starting the test loop. The ***
*** test loop will start with the highest possible amount of SAMS ***
*** memory (32 MiB), proceeding by halving the range until 128 ***
*** KiB is reached. 128 KiB is assumed to be the lowest viable ***
*** SAMS. The actual page tested will be >000E higher than the ***
*** lowest page in the upper half of the range. To test, map ***
*** >000E + lowest page in upper half of SAMS range to >E000. For ***
*** 32 MiB, this is >100E. We initially store >0010 (LSB,MSB) in ***
*** R3 to allow a circular right shift each round before MOVing ***
*** to R0 to then add >0E00 (LSB,MSB) for the next test. If the ***
*** test fails at >001E, the last viable SAMS (128 KiB), R3 will ***
*** go to >0800, at which point the loop exits, setting R3 to 0, ***
*** effectively reporting "no SAMS". ***
*** ***
*** This routine should only be run after running SMSINI, which ***
*** insures that SAMS memory is mapped as in transparent mode. ***
*** This routine presumes that mapping is enabled, which is the ***
*** case after running SMSINI. ***
*** ***

* Set up SAMS check.
*
SMSCHK LI R2,>994A check-value
 MOV R2,@>E000 check-value to check-location
*
* Classic99 emulator can do 32 MiB
*
 LI R3,>0010 lowest page # in upper half of SAMS to R3 (LSB,MSB)
 LI R12,>1E00 CRU address of SAMS
SMSCK2 MOV R3,R0 lowest page in upper half of SAMS range
 AI R0,>0E00 get >000E pages higher
 SBO 0 enable SAMS mapper registers
 MOV R0,@>401C poke SAMS mapper register 14 for RAM >E000
 SBZ 0 disable SAMS mapper registers
 C @>E000,R2 examine check-location for test value
 JNE SMSXT1 exit if SAMS mapped, i.e., no match
 SRC R3,1 shift right circularly to halve the SAMS range
 CI R3,>0800 too far?

5

 JNE SMSCK2 no..try SAMS half the size of last pass
 CLR R3 yes..no SAMS, so set flag to 0
 JMP SMSXT2 we're outta here
SMSXT1 SWPB R3 restore page #
 SLA R3,1 double value (highest page # + 1)
 DEC R3 decrement to highest page #
SMSXT2 MOV R3,@SAMSFL save SAMS flag
 JEQ SMSEND if no SAMS, no need to restore default mapping
*
* Remap default SAMS page >0E to RAM >E000.
* R12 should still have correct CRU address (>1E00).
*
 LI R0,>0E00 load SAMS page >000E
 SBO 0 enable SAMS mapper registers
 MOV R0,@>401C poke SAMS mapper register 14 for RAM >E000
 SBZ 0 disable SAMS mapper registers
SMSEND RT return to caller

6

MAP—Map a SAMS Page to a 4-KiB CPU RAM Window

****** MAP [SAMS page-mapping routine] *****************************

*** ***
*** Originally ported from TurboForth code courtesy of Mark Wills ***
*** and modified to handle 128 KiB..32 MiB. ***
*** ***
*** Inputs... ***
*** R1: Address of RAM mapping window, which should be a valid ***
*** address on a 4K boundary (e.g., >2000, >3000, >A000, ***
*** >B000, >C000, >D000, >E000, >F000). R1 value is forced ***
*** to a 4-KiB boundary by virtue of the SRL instruction ***
*** at the start of the routine and the fact that writing ***
*** to a SAMS register address ignores the rightmost bit ***
*** (LSb) of the address. ***
*** R2: SAMS page # to map to above RAM window. R2 should be a ***
*** number between 0 and SAMSFL (maximum possible page of ***
*** current SAMS card. ***
*** ***
*** It is presumed that mapping mode is set, so nothing is done ***
*** with SAMS card bit 1 in this routine. ***
*** ***
*** It is a good idea to check whether the SAMS page about to be ***
*** mapped is higher than SAMSFL prior to calling this routine or ***
*** add that error check to the MAP routine itself. Code similar ***
*** to the following would do the trick: ***
*** ***
*** C R2,@SAMSFL requested SAMS page too high? ***
*** JH ERROR_HANDLER yes..deal with the error ***
*** ***

MAP SRL R1,11 0-based location on card of SAMS register
 AI R1,>4000 address on card of SAMS register
 SWPB R2 reverse byte order of page for SAMS register
 LI R12,>1E00 CRU address of SAMS
 SBO 0 enable SAMS mapper registers
 MOV R2,*R1 poke SAMS mapper register (LSb ignored)
 SBZ 0 disable SAMS mapper registers
 RT return to caller

7

	SAMS Memory Expansion Guide
	Author: Lee Stewart
	Introduction
	Transparent Mode
	Mapping Mode
	Mapping SAMS Pages
	Reading the Mapper Registers
	TMS9900 Assembly Language Code (ALC) Routines
	SMSINI—Initialize SAMS card
	SMSCHK—Check for Presence of SAMS Card
	MAP—Map a SAMS Page to a 4-KiB CPU RAM Window

