Einleitung

Diese neue Karte für den TI99/4A ist keine gewöhnliche GRAM-Karte. Die große Neuerung besteht darin, daß die GROM-Adresszähler bei dieser Karte voll rücklesbar sind. Dies ermöglicht nun endlich, das letzte Original-GROM aus der Konsole zu entfernen. Dies wiederum erlaubt es, mit einer höheren Taktfrequenz als den üblichen 447KHz für alle Module zu fahren. Im Falle der HSGPL ist dies der volle Prozessor-Takt von 3 MHz. Die erzielte Beschleunigung im GROM-Zugriff liegt bei etwa dem 8fachen der normalen Zugriffs-Geschwindigkeit, Also laufen alle Module über diese Karte mit voller CPU-Zugriffs-Geschwindigkeit, nur noch durch den GPL-Interpreter im ROM0 gehemmt. Natürlich ist diese Beschleunigung auch abschaltbar (wie von mir gewohnt). Die Karte hat alle 16 vom Betriebssystem unterstützten GROM-Bänke mit jeweils 8 mal 8KByte (=64K). Zusätzlich, und das ist bei einer GRAM-Karte bisher einmalig, hat diese Karte jeweils 4 ROM-Bänke p r o GROM-Bank. Bisherige GRAM- oder GPL-Karten haben alle den Nachteil, daß sie zwar unterschiedlich viele GROM/GRAM-Bänke haben, jedoch nur ein zwei- oder vierfach gebanktes ROM für alle GPL-Bänke gemeinsam. Somit kann man bei diesen Karten nur ein einziges Modul mit ROM laden. Bei der HSGPL könnte man zum Beispiel 16 verschiedene EX-BASIC-Module laden mit jeweils verschiedenen ROM-Bänken, oder TI-CALC, das einzige mir bekannte Original-TI-Modul mit 4 ROM-Bänken und allen GROM's. Es gibt also keine Beschränkung. Insgesamt macht das also 1MB GROM und 512KB ROM. Diese Speicher sind sogenannte FLASH-EEPROM. Diese lassen sich on-board programmieren, man benötigt also keinen Programmer. Zum schnellen Ausprobieren und für Module, die nur auf der Grund-page >9800 laufen (die gibts leider), sind die zwei unteren GROM und ROM Bänke nochmal als RAM vorhanden. Also nochmal 128KB GRAM mit 64KB RAM. Da man auf so einer Karte praktischerweise auch eine DSR hat (für den Programmier-Algoritmus der FEPROM's zum Beispiel) sind nochmal bis zu 512KB DSR-ROM on board. Diese liegen auf der CRU-Adresse >1B00, die vom Betriebssystem für GPL-Erweiterungen vorgesehen waren und auch angesprungen werden. Dort könnte man also den GPL-Interpreter noch mit weiteren Befehlen versehen. Insgesamt hat diese Karte also bis zu 2240KB Speicher, der auch voll nutzbar ist. Der Preis dieser Karte liegt wegen der doch recht teuren Speicher (das Neueste vom Neuesten!) bei ca. 450,- DM. Irgendwie läßt sich eine Peri-Box-Karte nicht viel billiger machen, wenn man eine anständige Platinenqualität will.

Mannheim, im April 1995

Michael

Selektierung der GPL-Bereiche

Die Unterscheidung der maximal 16 verschiedenen GPL-Bänke geschieht durch die vom Betriebssystem des TI99/4A unterstützten 16 GROM-Leseadressen. Diese beginnen bei >9800 (die sogenannte Grundpage) und werden jeweils um >04 inkrementiert. Die höchste Leseadresse liegt demnach bei >983C. Dazwischen liegen jeweils die Adress-Leseadressen, von denen aber nur >9802 verwendet wird. Das ganze gibt es natürlich auch für das Schreiben von Daten in ein GRAM. Dann beginnen die Adressen bei >9C00 und enden bei >9C3C. Von den dazwischenliegenden Adressen wird wiederum nur >9C02 zum Beschreiben des GROM-Adresszählers genutzt. Das Betriebssystem des TI99/4A vergleicht das GROM 3 (G>6000-7FFF) von der Leseadresse >9800 mit dem der Leseadresse >9804. Wird hier ein Unterschied entdeckt, erscheint der zusätzliche Menüpunkt "REVIEW MODUL LIBRARY". Wählt man diesen an, wird weitergeblättert und die nächste Leseadresse bzw. das dort gefundenene Modul angezeigt. Wird kein anderes Modul mehr gefunden, geht die Suche wieder von vorne los, was auch wichtig ist, denn es gibt kein Rückwärtsblättern. Trotz ein paar Schönheitsfehlern habe ich mich zu dieser Art der Selektierung entschlossen, während andere Karten die Auswahl über CRU-bit's machen. Ein großer Vorteil dieser Methode ist eben, daß das ganze auch ohne DSR oder Loader läuft. Das Betriebssystem findet sich halt ganz allein zurecht, ohne daß noch irgendeine Zusatzsoftware irgendwelche CRU-bit's setzen muß. Denn einen Schalter betätigen, wie bei Harald Glaab's Multimodul, geht eben bei einer Peri-Box-Karte nicht. Ich erwecke auch gerne im Betriebssystem des TI "schlummernde" Funktionen. Die CRU-Adresse der Karte kommt auch nicht durch Zufall zustande: Der GPL-Interpreter des TI99/4A hat einige unbelegte OP-codes, die eine auf >1Bxx liegende Karte einschalten und drei Adressen im Bereich >4xxx anspringen. Diese sind zur Erweiterung des GPL-Interpreters gedacht und somit paßt das genau auf meine GPL-Karte. Was liegt denn näher, als eine Karte, deren Funktion sowieso ausschließlich mit GPL zu tun hat, auf eine CRU-Basis zu legen, deren DSR-Bereich sowieso schon vom GPL-Interpreter benutzt wird! Das DSR-ROM der HSGPL hat insgesamt 512KByte, das langt auch noch für die Erweiterungen des Interpreters. Somit haben GPL-Profis wie Winfried Winkler fast ein halbes Megabyte zum Austoben.

Selektierung der ROM6-Bereiche

Allen mir bekannten GROM/GRAM-Erweiterungen ist gemeinsam, daß sie zwar manchmal mehrere GROM-Bänke haben (wie bei MECHATRONIK), aber meist nur ein ROM/RAM auf >6xxx. Es gibt aber viele Module, die zusätzlich zu den GROM's auch noch mindestens ein ROM, manchmal sogar bis zu vier Stück auf >6xxx haben. Das beste Beispiel dafür ist das TI-CALC, ein Original-TI-Modul mit GROM's und einem Vierfach-Banking auf >6000. Also müßte man am Besten pro GPL-Seite je ein Vierfach-Banking auf >6xxx haben. Hat die HSGPL auch! Bleibt nur noch die Frage, wie immer die passende ROM-Seite zur GPL-Seite angewählt wird. Das war das erste Mal, daß ich als "HardWerker" tief in das Betriebssystem abgetaucht bin. Meine "Ermittlungen" dort ergaben, daß von jedem Modul immer zuerst das GROM gelesen wird. Also wird dieser Befehl auf der Hardware der HSGPL dekodiert und die gerade aktuelle GROM-Leseadresse eingelatcht und das war's! Das Umschalten innerhalb der vier ROM-Bänke geschieht wie üblich über das Schreiben auf die vier Umschaltadressen >6000 bis >6006. Zum Programmieren kann dieser Speicherbereich auch über GROM-Adressen erreicht werden. Siehe unter in-system-Programmierung.

Selektierung der DSR-Bereiche

Das Flash-EEPROM für die DSR ist immer vom selben Typ wie alle übrigen FEPROM. Seine tatsächliche Größe hängt also von der Ausbaustufe ab. Es ist aber durch das Setzen von fünf CRU-bits insgesamt 64mal zu pagen. Der Bereich von >4000 bis >5FFF ist linear erreichbar, d.h. ohne irgendwelche traps wie bei Disk-Controllern oder Video-Karten. Zum Programmieren kann dieser Speicherbereich auch über GROM-Adressen erreicht werden. Siehe unter **in-system-Programmierung**.

Inkompatibilitäten

Leider gibt es welche. Wie schon bei der Einführung der 80-Zeichenkarten aufgefallen ist, haben sich einige Software-Entwickler wohl nicht an die geltenden Empfehlungen von TI gehalten. So wie es falsch gesetzte Video-Register gibt, gibt es auch falsch gesetzte GROM-Leseadressen in manchen Modulen. Es gibt einige wenige Module, die auf bestimmten GPL-Seiten laufen, auf anderen wieder nicht. So funktioniert zum Beispiel das TI-WRITER-Modul problemlos auf allen Seiten, aber der Formatter, der von Diskette oder "self-contained" nachgeladen wird, springt zum Titelbild, wenn er auf einer anderen als der Grundpage >9800 laufen soll. Das ist zwar ärgerlich, aber nicht hoffnungslos. Für solche Fälle läßt sich auf den beiden unteren GPL-Seiten GRAM einblenden, in das man aber vor dem Umschalten das Modul und GROM 0 umkopiert haben muß. Gedacht ist dies, um eben inkompatible Module auf >9800 umzukopieren, kann aber auch als normales GRAM benutzt werden. Damit man beim Umkopieren nicht dauernd zwischen GROM/GRAM umschalten muß und sich eventuell den Boden unter den Füßen wegzieht, erreicht man die beiden GRAM-Bänke auch ohne Umschalten auf separaten Schreib-/Lese-Adressen. Diese liegen bei >9880, >9884 sowie

>9C80,> 9C84. Diese Adressen werden vom Betriebssystem 99/4A nicht mehr abgefragt, sind aber auch nicht anderweitig belegt. Die dazu passenden ROM6-Seiten liegen alternativ auf >98C0 sowie >9CC0. Dabei liegen die vier ersten ROM6-Bänke auf G>0000 bis G>7FFF, die vier ROM6-Bänke der zweiten RAM-Bank auf G>8000 bis G>FFFF. Da die ROM6-Bänke beider RAM-Seiten zusammen nur 64kbyte belegen, genügte hier eine einzige GROM-Basisadresse.

Einstellmöglichkeiten

Davon gibt es wenige. Die Ganze Karte hat nur zwei Jumper und eine kleine Drahtbrücke. Die Jumper sind zum Einstellen der verwendeten Speichergröße und werden normalerweise von uns vor Auslieferung einmalig eingestellt. Da das GROM 0 noch vor jeder DSR angesprungen wird, entfällt hier die Möglichkeit der Abfrage über Software. Ob ein user nun mit dem internen GROM 0 fährt oder nicht, muß er selber entscheiden und die Brücke unversehrt lassen oder durchtrennen. Für GROM 1&2 (normalerweise als TI-Basic kombiniert) gibt es so etwas nicht, da für den Betrieb mit 80-Zeichen-Karten sowieso ein Softwarefehler zu beheben ist. Also sind GROM 1&2 immer auf der Karte enabelt und müssen aus der Konsole entfernt werden. Die hohe Zugriffs-Geschwindigkeit ergibt sich aber nur bei entferntem Original-GROM 0 und eingeschalteten GROM 0 auf der Karte! Sonst bremst das GROM in der Konsole ja von selber über seinen READY-Pin.

Einbau in die Box

Der Einbau geht nach der Einstellung der beiden Jumper sorgfältig und unter Vermeidung statischer Entladungen wie bei jeder Karte. Es sind keine zusätzlichen Kabel oder Auftrennungen notwendig. Man muß nur seine Konsole aufschrauben und mindestens die GROM's 1&2 , besser alle drei GROM's aus den Sockeln ziehen. Wer seinen Sound-chip noch nicht aus der Konsole entfernt hat, hat jetzt die Gelegenheit, ihn auf die EVPC zu verpflanzen! Das war's schon.

GROM 0	CD 2155xxx
GROM 1	CD 2156xxx
GROM 2	CD 2157xxx
Sound	SN94xxx
oder	SN76xxx

Ausbaustufen

Diese Karte gibt es in mehreren Größen. Der Grund dafür ist, daß die verwendeten Speicher noch sehr teuer sind. Dabei handelt es sich um sogenannte FLASH-EEPROM. Diese haben den Vorteil, daß man sie elektrisch löschen kann. Die auf der HSGPL verwendeten Typen sind sogar welche aus der Familie 29Fxxx bzw. 29Cxxx, die mit nur +5 Volt programmiert werden können. Das erspart das Programmiergerät. Für den TI-user hat das den Vorteil, daß er weder ein Löschgerät noch einen EPROM-Programmer braucht. Letztere können sowieso meist nur bis 27C512 Programmieren und wie gut, ist mehr als zweifelhaft. Hier konnte ich nun alle Größen beliebig verwenden, ohne Rücksicht darauf, welchen Programmer wohl der einzelne user hat. Zur Zeit der Entwicklung (Februar 1995) sind die Speicher für den Vollausbau (viermal 29F040) noch sehr teuer, sodaß diese Größe nur auf besonderen Wunsch bestückt wird. Die Standardversion hat viermal 29F010 und läßt sich später problemlos umbestücken. Übrigens: 29F ist die Bezeichnung bei AMD und SGS-Thomson, die Firma Atmel nennt ihre FLASH's 29C.

Mögliche Kombinationen

DSR	GROM	ROM	GRAM	RAM	ca.Preis
29C512	2x29C512	29C512	628128	628128	370,-
29C010	2x29C010	29C010	628128	628128	390,-⇐
29C020	2x29C020	29C020	628128	628128	440,-
29C040	2x29C040	29C040	628128	628128	490,-⇔

Die Version mit 29C512 ist für verarmte TI-user gedacht, die wenigstens eine GPL-Karte auf einer vernünftigen Platine haben wollen, aber momentan kein Geld haben. Es gibt noch ein paar Kombinationen, aber das hier sind die sinnvollsten. Die ca.-Preise sind bezogen auf den März 1995. Die aus der Bestückung gewählte Gesamtgröße ist in nachstehender Tabelle aufgelistet. Dabei bedeutet 4+2 soviel wie 4 GROM-Bänke mit je 64KB sowie 2 GRAM-Bänke mit 64KB. Dazu kommen immer noch DSR von 64KB bis 512KB bei den Versionen mit FLASH-EPROM.

Тур	Bänke	Größe

29C512	2 + 2	448KB
29C010	4 + 2	704KB
29C020	8 + 2	1216KB
29C040	16 + 2	2240KB

Der Hauptdekoder

Die gesamte Dekodierung sowie der GROM-Adresszähler ist in einem programmierbaren Logik-Baustein vom Typ MACH435 untergebracht. Diese hohe Integration war notwendig geworden, weil die Schaltung, die das Rücklesen ermöglicht, nicht ganz trivial zu realisieren ist. Deshalb haben ja bis jetzt alle Hersteller von GRAM/GROM-Karten darauf verzichtet und lieber ein Original-GROM in der Schaltung belassen. Die Schwierigkeit besteht nämlich darin, daß der GROM-Adresszähler beim GROM-Daten-Lesen oder -Schreiben jeweils nach dem Speicherzugriff hochgezählt wird. Beim Adresse-Lesen aber muß dies vor dem eigentlichen Zugriff geschehen. Sonst würde bei einem Übertrag von den unteren 8-bit auf das Highbyte eventuell ein Sprung passieren. Als Beispiel: Ist der aktuelle Zählerstand gerade G>3FFF, so würde man sonst auf dem high-byte noch >3F lesen, beim low-byte aber schon >00. Richtig wäre aber >40 und >00 für G>4000 gewesen. Also muß, wie bei den Original-GROM, am Beginn des ersten Bytes hochgezählt werden, damit der Übertrag richtig funktioniert und bereits das richtige high-byte gelesen wird. Außerdem darf nur einmal inkrementiert werden, egal wie oft (ob sinnvoll oder nicht) die Adresse gelesen wird. Die Original-GROM geben dann nämlich immer das low-byte heraus, nachdem einmal das high-byte gelesen wurde, egal wie oft dann noch weitergelesen wird. Um kein Risiko einzugehen, habe ich diese Eigenschaft (wahrscheinlich ein Design-Fehler der GROM) mitübernommen, denn mindestens eine Stelle im Betriebssystem ist mir bekannt, wo die Adresse dreimal statt zweimal gelesen wird. Für den MACH435 mit insgesammt 128 Macrozellen und etwa 5000 Gatterequivalenten war das kein Problem, aber als diskrete Schaltung hätte ich ein "Kuchenblech" gebraucht, um alles unterzubringen. Außerdem kann man ihn im Fehlerfall umprogrammieren, ohne daß eine Änderung des lavout's notwendig wäre. Eventuell fällt bei der Entwicklung der Lade- und Programmiersoftware noch daß eine oder andere auf, dann kann man es eben noch mit hineinprogrammieren. Zu diesem Zwecke ist der MACH (Macro-Array-CMOS-High-speed) betriebsmäßig gesockelt. Daß dieser chip auch noch die CRU-Latches und die ganze Dekodierung enthält, brauche ich wohl nicht zu erwähnen. Neuer Rekord: Mit 84 pin ist der MACH nun der chip mit den meisten pin im TI99/4A-System.

Software-Support

Momentan läuft die Karte absolut stand-alone, d.h. nur mit einer minimalen DSR. Mehr braucht sie auch nicht, da sie ja vom Betriebssystem verwaltet wird. Geplant ist eine Ladesoftware, mit der man in der GRAM-Seite sich ein Modul zusammenstellen kann, bevor man es dann in die gewünschte GROM-Seite programmiert. Das hat den Vorteil, daß nicht GROM für GROM einzeln geladen und programmiert werden muß. Herkömmliche Loader können ja immer nur Blöcke zu je 8Kbyte handhaben. Außerdem kann erst einmal in der GRAM-Bank ausprobiert werden, ob das Modul läuft (wenn es ein selbstgeschriebenes ist) oder nicht. Was auf jeden Fall in eine DSR kommen wird, ist ein kleiner CALL: Für Anwendungen, bei denen sich die enorme Zugriffs-Geschwindigkeit als störend erweist, kann dann mit CALL SLOW oder CALL FAST das Besagte eingeschaltet werden. Die momentane DSR setzt nur das CRU-bit PG6, das den Bereich G>2000 bis G>FFFF erst freigibt. Der Bereich G>0000 bis G>1FFF ist immer freigegeben, denn ohne GROM0 geht es nunmal nicht. Dieses Freigabe-bit wird von der INIT-Routine erst gesetzt, wenn diese festgestellt hat, daß keine BASIC-GROM in der Konsole sind und kein Modul gesteckt ist.

Damit bei jeder neuen Loader-Version nicht immer das ganze Handbuch neu gedruckt werden muß, wird dessen Anleitung getrennt, als Anhang herausgegeben.

Betriebssystem 99/4A (P) / bug's

Das Betriebssystem des TI99/4A (oder P) arbeitet folgendermaßen: Es liest auf >9800 das GROM 3 aus, welches auf G>6000 bis G>7FFF liegt. Dieses wird verglichen mit dem GROM-Inhalt, der auf >9804 zu lesen ist. Ist dieses identisch, was bei einer normalen Konsole wegen der unzureichenden Dekodierung der GROM (>98xx, >9Cxx) immer der Fall ist, so wird die Suche abgebrochen und die Meldung **REVIEW MODUL LIBRARY** wird unterdrückt. Wird jedoch eine Differenz festgestellt, so erscheint in der ersten Auswahlliste eben diese Meldung als letzter Menü-Punkt. Wählt man ihn an, so wird die nächste Seite nach Modul-Namen durchsucht und eine neue Auswahlliste aufgebaut. Wird kein Modul gefunden, erscheint eben nur **REVIEW MODUL LIBRARY**. Insgesamt werden sechzehn Seiten durchgeblättert und gegebenenfalls immer wieder von vorn begonnen, bis ein Modul angewählt wird. Hier gibt es einen kleinen Fehler im Betriebssystem des TI99/4A: Wird beim ersten Vergleich des GROM3 der anfangs beschriebene Unterschied festgestellt, so wird versehentlich das GROM0 auch auf >9804 gelesen. Im Klartext bedeutet das, daß auf der Seite 1 (>9804) mindestens ein GROM0 vorhanden sein muß. Deshalb gibt es die HSGPL auch mit minimal zwei Seiten und deshalb hat auch der GRAM-Teil zwei Seiten (>9800 und >9804)! Auf allen ande-

ren Seiten braucht überhaupt nichts zu sein. Hat man hier jedoch ein Modul, so muß auch mindestens ein GROM0 mit vorhanden sein. Außerdem muß auf jeder belegten Seite ein GROM3 mit gültigem Header vorhanden sein, sonst wird sofort weitergeblättert und Einsprünge in höheren GROM's erst gar nicht gefunden. Das ist zum Glück nicht so schlimm, da alle vernünftigen Module immer das GROM3 belegt haben. Nur bei einigen Spiel-Modulen ist das anders, wobei mir da der Verdacht kommt, daß diese ursprünglich zusammen in ein Modul gehörten und erst später getrennt verkauft wurden. Dabei handelt es sich zum Beispiel um ZERO-ZAP (nur GROM7), HANGMAN (nur GROM5) und CONNECT FOUR (nur GROM4). Wenn diese auf einer GPL-Seite vorhanden sind, werden sie wegen des fehlenden GROM3 nicht gefunden. Brennt man noch ein beliebiges Spiel dazu, was nur GROM3 hat, davon gibt es jede Menge, werden plötzlich alle Modul-Einsprünge gefunden, auch ZERO-ZAP, obwohl zwischen GROM5 und GROM7 eine Lücke ist. Wichtig ist also, daß auf jeder benutzten GPL-Seite ein gültiges GROM3 gefunden wird, sonst wird die ganze Seite übergangen. Minimal wird die Karte mit TI-Writer auf Seite 0 und Extended Basic auf Seite 1 ausgeliefert. Der TI-Writer ist eine self-contained (keine zusätzliche Diskette) - 80-Zeichen-Version und in deutsch. Das TI-Basic, was auch in beiden Seiten vorhanden ist, ist eine Version mit korrigierten Initialwerten für die V9938-VDP-Register.

Hardware-Voraussetzungen

Für den Betrieb dieser Karte ist außer der Konsole mit 32K-RAM und Peri-Box nur eine 80-Zeichen-Karte mit V9938 notwendig, am Besten natürlich unsere EVPC. Dies ist notwendig, da der alte 9929 für schnelle Prozessorzugriffe eigentlich zu langsam war. Genau das aber wird hier ja forciert getan. Mit dem V9938 ist das kein Problem. Bei der Verwendung der HSGPL und aus der Konsole entfernten Original-GROM kann nun bereits eine der beiden externen Leitungen von der Konsole zur EVPC entfallen. Es handelt sich dabei um das Signal *GROM-CLOCK*, der Stecker mit den beiden verbundenen Kontakten auf der EVPC. Man kann den Stecker jetzt durch einen Jumper ersetzen. Das zweite Kabel entfällt bei der nächsten Karte, die auch schon kurz vor der Vollendung steht: Die *SECOND-GENERATION-CPU*, also der TI für die BOX. Dieser benötigt dann aber unbedingt sowohl die EVPC wie auch die HSGPL, denn sowohl der Video-Teil wie auch die GROM's sind da nicht mehr enthalten. Nun kann ich es ja verraten: Das war von langer Hand vorbereitet, sowohl die EVPC wie auch die HSGPL sind für die *SGCPU* entwickelt und funktionieren halt mal nebenher auch mit der Konsole. Hätte ich von vornherein gesagt, ich bringe ein komplettes System - alle hätten mich für verrückt erklärt!

Ausblick auf die SGCPU

Diese Karte besitzt wieder einen TMS9900 mit dem originalen Betriebssystem TI99/4A. Hier habe ich nicht versucht, so einen Krüppel wie den GENEVE zu bauen. Was hier im Gegensatz zur Konsole anders ist, ist folgendes:

- kein Modul-Port, deshalb ist unbedingt die HSGPL erforderlich
- · kein VDP-Teil, deshalb ist unbedingt die EVPC erforderlich
- kein Cassetten-Port, wofür noch?
- eingebaute 32K16, wie auch als Subprint gewohnt
- eingebaute CRU auf >0F00 mit 8Kbyte DSR, 16bit breit
- eingebautes Tastatur-Interface für PC-MF2 (AT-Tastatur)
- voll DMA-fähig, zum Beispiel für eine zweite CPU-Karte
- alle 19 Adressleitungen der Box werden unterstützt.
- alle Interrupt-Level-Sense-Leitungen werden bedient

Änderungen vorbehalten.

Diese Karte wird gerade noch zu ende entwickelt, bevor sie in die Leiterplatten-Entflechtung geht. Etwa im September/Oktober wird sie wohl fertig sein. Man darf gespannt sein!

in-system-Programmierung

Bei der Inbetriebnahme der ersten Karte stellte sich eine Eigenart unseres TMS9900 als sehr störend heraus. Dieser kann weder einen einzelnen byte-Zugriff noch eine einzelne Schreib-Operation ausführen. Beides wird für die Programmierung der FEPROM aber benötigt. Jede Operation (Programmieren, löschen, verify) wird durch zwei Kommandos initiiert. Zuerst muß das byte >AA in die Adresse >5555 des FEPROM geschrieben werden, dann >55 in die Adresse >2AAA. Als dritter Befehl wird dann der code der gewünschten Operation wieder nach >5555 geschrieben. Alle drei Schreibzugriffe müssen hintereinander an diesem FEPROM geschehen. Der TMS9900 mach aber immer ein read-modify-write, auch bei byte-Befehlen. Erst wird das gewünschte byte wortweise (!) gelesen, dann das entsprechende byte geändert und dann das ganze wieder als Wort zurückgeschrieben. Damit aber kommt das FEPROM nicht zurecht. Das ist aber auch

der Grund, warum es in der TI99-Welt für alle kritischen Bereiche sogenannte Schreib- und Leseadressen gibt. Bei den GROM's würde wegen des automatischen Inkrementierens der Adresszähler immer gleich um zwei hochgezählt, da ja die Hardware zwei byte-Zugriffe sieht. Deswegen sind auch diese Adressen immer gerade, damit der Zugriff auf das zweite byte immer ins leere geht. Da das Programmieren aber wegen der getrennten Schreib- / Lese-Adressen bei GPL geklappt hat, bin ich als Abhilfe auf was ganz geniales gekommen: Der Bereich der DSR und des ROM6, beides memory-mapped und damit der Problemfall, läßt sich einfach noch ein zweites mal erreichen. Ich habe einfach über den 16 vom Betriebssystem verwalteten GROM-Seiten noch einmal 16 Seiten gelegt, auf denen dann der Reihe nach das DSR-ROM und dann das ROM6 erscheinen. Dabei konnte ich gleich den GROM-Adresszähler mitverwenden, der MACHt's möglich! Achtung: Beide Speicher liegen nicht immer direkt hintereinander. Bei kleineren Karten gibt es zwischen alternativen DSR-Adressen (>9x40 bis >9x5C) und ROM6-Adressen (>9x60 bis >9x7C) gegebenenfalls eine Lücke. Siehe auch Anhang 2. Die angegebenen alternativen Adressen gelten für eine Bestückung mit 29C040, also der grösten Ausbaustufe. Die übrigbleibenden hinteren Adressen sind dann einfach leer. Die beiden zusätzlichen GRAM-Bänke lassen sich unter >9x80 bis 9x84, die RAM-Bänke unter >9xC0 bis 9xFC erreichen.

CRU-Map:

CRU-bit	SBx	16Bit	Name	Bedeutung, wenn gesetzt
>1B00	>0	>0001	DEN	DSR-Bereich (>4000->5FFF) ist eingeschaltet
>1B02	>1	>0002	GRAM_EIN	GRAM-Bänke für Page 0/1 anstatt FEEPROM
>1B04	>2	>0004	BANK_INH	Paging-Sperre
>1B06	>3	>0008	PG0	Paging-Adresse für DSR, insgesamt 6 Bit, entspricht
>1B08	>4	>0010	PG1	64 DSR-Pages
>1B0A	>5	>0020	PG2	
>1B0C	>6	>0040	PG3	
>1B0E	>7	>0080	PG4	
>1B10	>8	>0100	PG5	
>1B12	>9	>0200	PG6	Enable für die ganze Karte GROM/ROM
>1B14	>A	>0400	WRITE_EN	Schreibfreigabe für alle FEEPROM und RAM
>1B16	>B	>0800	SCART_EN	Super-Cart einschalten
>1B18	>C	>1000	LED_EN	Einschalten der Front-LED
>1B1A	>D	>2000	frei	unbelegt
>1B1C	>E	>4000	MBX_EN	MBX-Erweiterung einschalten
>1B1E	>F	>8000	RAM_EIN	RAM-Bänke für Page0/1 anstatt FEEPROM

Memory-Map:

Bereich	Name	Bedeutung
>74000->75FFF	DSR	sollte jeder kennen! 64mal vorhanden.
>76000->77FFF	ROM6	ROM im Modul-Bereich, vierfach
>76000	[ROM6]	Schreibadresse für Banking ROM 6000
>76002	[ROM6]	Schreibadresse für Banking ROM 6002
>76004	[ROM6]	Schreibadresse für Banking ROM 6004
>76006	[ROM6]	Schreibadresse für Banking ROM 6006

Jumper:

Jumper J2	Jumper J1	Bedeutung :
offen	offen	Speichergröße 29C512.
offen	gesteckt	Speichergröße 29C010.
gesteckt	offen	Speichergröße 29C020.
gesteckt	gesteckt	Speichergröße 29C040.

GROM-Map:

GROM-Daten-Lesen schaltet automatisch auch die zur gerade gelesenen Page zugehörigen ROM-Bänke ein

Für die GPL-Adressen werden die drei höchsten Adressen AMA, AMB und AMC der Peri-Box <u>nicht</u> berücksichtigt, jedoch für alle sonstigen memory-mapped-devices wie bei den Original-TI-Karten. Da diese invertierend sind, weiß der Himmel warum, beginnen die betroffenen Adressbereiche alle mit >7... Der CRU-Bereich ist voll ausdekodiert, für CPU-Karten mit mehr als 2K-bit CRU-Adressbereich.

Die Pages von >9x40 bis >9x7C und >9xC0 sind keine GPL-Pages, sondern die Alternativ-Adressen, unter denen man DSR und ROM6 bzw. RAM6 programmieren kann. Siehe Text und Anhang2.

Bereich	Name	Bedeutung
>9800	GRMRD	GROM-Daten-Lese-Adresse Page 0
>98x2	GRMRA	GROM-Adress-Lese-Adresse
>9804	GRMRD	GROM-Daten-Lese-Adresse Page 1
>9808	GRMRD	GROM-Daten-Lese-Adresse Page 2
>980C	GRMRD	GROM-Daten-Lese-Adresse Page 3
>9810	GRMRD	GROM-Daten-Lese-Adresse Page 4
>9814	GRMRD	GROM-Daten-Lese-Adresse Page 5
>9818	GRMRD	GROM-Daten-Lese-Adresse Page 6
>981C	GRMRD	GROM-Daten-Lese-Adresse Page 7
>9820	GRMRD	GROM-Daten-Lese-Adresse Page 8
>9824	GRMRD	GROM-Daten-Lese-Adresse Page 9
>9828	GRMRD	GROM-Daten-Lese-Adresse Page A
>982C	GRMRD	GROM-Daten-Lese-Adresse Page B
>9830	GRMRD	GROM-Daten-Lese-Adresse Page C
>9834	GRMRD	GROM-Daten-Lese-Adresse Page D
>9838	GRMRD	GROM-Daten-Lese-Adresse Page E
>983C	GRMRD	GROM-Daten-Lese-Adresse Page F
>9840	GRMRD	GROM-Daten-Lese-Adresse DSR
>9844	GRMRD	GROM-Daten-Lese-Adresse DSR
>9848	GRMRD	GROM-Daten-Lese-Adresse DSR
>984C	GRMRD	GROM-Daten-Lese-Adresse DSR
>9850	GRMRD	GROM-Daten-Lese-Adresse DSR
>9854	GRMRD	GROM-Daten-Lese-Adresse DSR
>9858	GRMRD	GROM-Daten-Lese-Adresse DSR
>985C	GRMRD	GROM-Daten-Lese-Adresse DSR
>9860	GRMRD	GROM-Daten-Lese-Adresse ROM6
>9864	GRMRD	GROM-Daten-Lese-Adresse ROM6
>9868	GRMRD	GROM-Daten-Lese-Adresse ROM6
>986C	GRMRD	GROM-Daten-Lese-Adresse ROM6
>9870	GRMRD	GROM-Daten-Lese-Adresse ROM6
>9874	GRMRD	GROM-Daten-Lese-Adresse ROM6
>9878	GRMRD	GROM-Daten-Lese-Adresse ROM6
>987C	GRMRD	GROM-Daten-Lese-Adresse ROM6
>9880	GRMRD	GROM-Daten-Lese-Zusatz-Adresse für GRAM-Page 10
>9884	GRMRD	GROM-Daten-Lese-Zusatz-Adresse für GRAM-Page 11
>98C0	GRMRD	GROM-Daten-Lese-Zusatz-Adresse für RAM-Page 10 und 11

7000	J. W. W. L.	und 11
>9CC0	GRMWD	GROM-Daten-Schreib-Zusatz-Adresse für GRAM-Page 10
>9C84	GRMWD	GROM-Daten-Schreib-Zusatz-Adresse für GRAM-Page 11
>9C7C >9C80	GRMWD GRMWD	GROM-Daten-Schreib-Adresse ROMO GROM-Daten-Schreib-Zusatz-Adresse für GRAM-Page 10
>9C7C	GRMWD	GROM-Daten-Schreib-Adresse ROM6
>9C74 >9C78	GRMWD	GROM-Daten-Schreib-Adresse ROM6
>9C70 >9C74	GRMWD GRMWD	GROM-Daten-Schreib-Adresse ROM6 GROM-Daten-Schreib-Adresse ROM6
>9C6C >9C70		
>9C68 >9C6C	GRMWD	GROM-Daten-Schreib-Adresse ROM6 GROM-Daten-Schreib-Adresse ROM6
>9C64 >9C68	GRMWD GRMWD	GROM-Daten-Schreib-Adresse ROM6 GROM-Daten-Schreib-Adresse ROM6
	GRMWD	GROM-Daten-Schreib-Adresse ROM6
>9C5C >9C60		GROM-Daten-Schreib-Adresse DSR
>9C58 >9C5C	GRMWD	GROM-Daten-Schreib-Adresse DSR
>9C54 >9C58	GRMWD	GROM-Daten-Schreib-Adresse DSR
>9C50 >9C54	GRMWD GRMWD	GROM-Daten-Schreib-Adresse DSR
		GROM-Daten-Schreib-Adresse DSR
>9C48 >9C4C	GRMWD GRMWD	GROM-Daten-Schreib-Adresse DSR
	GRMWD	GROM-Daten-Schreib-Adresse DSR
>9C40 >9C44		
>9C3C >9C40	GRMWD	GROM-Daten-Schreib-Adresse Page F GROM-Daten-Schreib-Adresse DSR
>9C38 >9C3C	GRMWD	GROM-Daten-Schreib-Adresse Page E
>9C34 >9C38	GRMWD	GROM-Daten-Schreib-Adresse Page D
>9C30 >9C34	GRMWD	ů
>9C2C >9C30	GRMWD	GROM-Daten-Schreib-Adresse Page B GROM-Daten-Schreib-Adresse Page C
>9C2C	GRMWD	GROM-Daten-Schreib-Adresse Page B
>9C24 >9C28	GRMWD	GROM-Daten-Schreib-Adresse Page 9 GROM-Daten-Schreib-Adresse Page A
>9C20 >9C24	GRMWD	GROM-Daten-Schreib-Adresse Page 9
>9C1C >9C20	GRMWD	GROM-Daten-Schreib-Adresse Page 8
>9C1C	GRMWD	GROM-Daten-Schreib-Adresse Page 7
>9C14 >9C18	GRMWD	GROM-Daten-Schreib-Adresse Page 6
>9C10 >9C14	GRMWD	GROM-Daten-Schreib-Adresse Page 4 GROM-Daten-Schreib-Adresse Page 5
>9C0C >9C10	GRMWD	Ŭ
>9C08 >9C0C	GRMWD	GROM-Daten-Schreib-Adresse Page 2 GROM-Daten-Schreib-Adresse Page 3
>9C04 >9C08	GRMWD	GROM-Daten-Schreib-Adresse Page 1 GROM-Daten-Schreib-Adresse Page 2
>9Cx2 >9C04	GRMWD	
>9C00 >9Cx2	GRMWA	GROM-Adress-Schreib-Adresse GROM-Adress-Schreib-Adresse
Bereich >9C00	Name GRMWD	Bedeutung GROM-Daten-Schreib-Adresse Page 0

Anhang 1:

Lauffähigkeitstest:

Modul-Name	GROM	ROM	Seite	80Z	Bemerkungen
TI-Writer (alle Vers.)	3	-	0	ja	wegen Formatter!
Editor/Assembler	3	-	0	ja	
Multiplan					
Terminal-Emulator 2					
TI Calc	3,4,5,6,7	0,2,4,6			
Extended Basic	3,4,5,6	0,2	alle	ja	
TI-Basic	1,2	-	alle	nein	Patch in G1 nötig!
	<u> </u>				
	<u> </u>				
	<u> </u>				
	<u> </u>				
<u></u>	0.150				1
Extended Basic	3,4,5,6	0,2	0 bis F		geht überall

Anhang 2:

FLASH-EPROM-Map der DSR:

Unter **Bemerkungen** stehen die alternativen GROM-Ansprech-Adressen!

Adresse	TI99	PG543210	Bemerk	ungen
00000 - 01FFF	>4000 - >5FFF	000000	>9840	>9C40
02000 - 03FFF	>4000 - >5FFF	000001		
04000 - 05FFF	>4000 - >5FFF	000010		
06000 - 07FFF	>4000 - >5FFF	000011		
08000 - 09FFF	>4000 - >5FFF	000100		
0A000 - 0BFFF	>4000 - >5FFF	000101		
0C000 - 0DFFF	>4000 - >5FFF	000110		
0E000 - 0FFFF	>4000 - >5FFF	000111		
10000 - 11FFF	>4000 - >5FFF	001000	>9844	>9C44
12000 - 13FFF	>4000 - >5FFF	001001		
14000 - 15FFF	>4000 - >5FFF	001010		
16000 - 17FFF	>4000 - >5FFF	001011		
18000 - 19FFF	>4000 - >5FFF	001100		
1A000 - 1BFFF	>4000 - >5FFF	001101		
1C000 - 1DFFF	>4000 - >5FFF	001110		
1E000 - 1FFFF	>4000 - >5FFF	001111		
20000 - 21FFF	>4000 - >5FFF	010000	>9848	>9C48
22000 - 23FFF	>4000 - >5FFF	010001	7 00 10	70010
24000 - 25FFF	>4000 - >5FFF	010010		
26000 - 27FFF	>4000 ->5FFF	010011		
28000 - 29FFF	>4000 - >5FFF	010100		
2A000 - 2BFFF	>4000 - >5FFF	010101		
2C000 - 2DFFF	>4000 - >5FFF	010110		
2E000 - 2FFFF	>4000 >5FFF	010111		
30000 - 31FFF	>4000 >5FFF	011000	>984C	>9C4C
32000 - 33FFF	>4000 - >5FFF	011001	70010	70010
34000 - 35FFF	>4000 - >5FFF	011010		
36000 - 37FFF	>4000 - >5FFF	011011		
38000 - 39FFF	>4000 - >5FFF	011100		
3A000 - 3BFFF	>4000 ->5FFF	011101		
3C000 - 3DFFF	>4000 ->5FFF	011110		
3E000 - 3FFFF	>4000 - >5FFF	011111		
40000	>4000	010000	>9850	>9C50
41FFF	>5FFF	010000	7 0000	7000
42000	>4000	010001		
43FFF	>5FFF	010001		
44000	>4000	010010		
45FFF	>5FFF	010010		
46000	>4000	010011		
47FFF	>5FFF	010011		
48000	>4000	010100		
49FFF	>5FFF	010100		
4A000	>4000	010101		
4BFFF	>5FFF	010101		
4C000	>4000	010110		
4DFFF	>5FFF	010110		
4E000	>4000	010110		
4FFFF	>5FFF	010111		
50000	>4000	011000	>9854	>9C54
51FFF	>5FFF	011000	73004	/3004
52000	>4000	011000		
J2000	> + 000	011001		

53FFF	FFFF	044004	
	>5FFF	011001	
54000	>4000	011010	
55FFF	>5FFF	011010	
56000	>4000	011011	
57FFF	>5FFF	011011	
58000	>4000	011100	
59FFF	>5FFF	011100	
5A000	>4000	011101	
5BFFF	>5FFF	011101	
5C000	>4000	011110	
5DFFF	>5FFF	011110	
5E000	>4000	011111	
5FFFF	>5FFF	011111	
60000	>4000	110000	>9858 >9C58
61FFF	>5FFF	110000	7 0000
62000	>4000	110001	
63FFF	>5FFF	110001	
64000	>4000	110010	
65FFF	>5FFF	110010	
66000	>4000	110011	
67FFF	>5FFF	110011	
68000	>4000	110100	
69FFF	>5FFF	110100	
6A000	>4000	110101	
6BFFF	>5FFF	110101	
6C000	>4000	110110	
6DFFF	>5FFF	110110	
6E000	>4000	110111	
6FFFF	>5FFF	110111	
70000	>4000	111000	>985C >9C5C
71FFF	>5FFF	111000	
72000	>4000	111001	
73FFF	>5FFF	111001	
74000	>4000	111010	
75FFF	>5FFF	111010	
76000	>4000	111011	
77FFF	>5FFF	111011	
78000	>4000	111100	
79FFF	>5FFF	111100	
7A000	>4000	111101	
7BFFF	>5FFF	111101	
7C000	>4000	111110	
7DFFF	>5FFF	111110	
7E000	>4000	111111	
7FFFF	>5FFF	111111	Ende bei 29C040

FLASH-EPROM-Map des ROM6:

Unter **Bemerkungen** stehen die alternativen GROM-Ansprech-Adressen!

Adresse	TI99	Bank	Bemerkungen
00000	>6000	>6000	>9860 >9C60
01FFF	>7FFF		
02000	>6000	>6002	
03FFF	>7FFF		
04000	>6000	>6004	
05FFF	>7FFF		
06000	>6000	>6006	
07FFF	>7FFF		
08000	>6000	>6000	
09FFF	>7FFF		
0A000	>6000	>6002	
0BFFF	>7FFF		
0C000	>6000	>6004	
0DFFF	>7FFF		
0E000	>6000	>6006	
0FFFF	>7FFF		Ende bei 29C512
10000	>6000	>6000	>9864 >9C64
11FFF	>7FFF		
12000	>6000	>6002	
13FFF	>7FFF		
14000	>6000	>6004	
15FFF	>7FFF		
16000	>6000	>6006	
17FFF	>7FFF		
18000	>6000	>6000	
19FFF	>7FFF		
1A000	>6000	>6002	
1BFFF	>7FFF		
1C000	>6000	>6004	
1DFFF	>7FFF		
1E000	>6000	>6006	
1FFFF	>7FFF		Ende bei 29C010

Adresse	TI99	Bank	Bemerkungen
20000	>6000	>6000	>9868 >9C68
21FFF	>7FFF		
22000	>6000	>6002	
23FFF	>7FFF		
24000	>6000	>6004	
25FFF	>7FFF		
26000	>6000	>6006	
27FFF	>7FFF		
28000	>6000	>6000	
29FFF	>7FFF		
2A000	>6000	>6002	
2BFFF	>7FFF		
2C000	>6000	>6004	
2DFFF	>7FFF		
2E000	>6000	>6006	
2FFFF	>7FFF		
30000	>6000	>6000	>986C >9C6C
31FFF	>7FFF		
32000	>6000	>6002	
33FFF	>7FFF		

34000	>6000	>6004	
35FFF	>7FFF		
36000	>6000	>6006	
37FFF	>7FFF		
38000	>6000	>6000	
39FFF	>7FFF		
3A000	>6000	>6002	
3BFFF	>7FFF		
3C000	>6000	>6004	
3DFFF	>7FFF		
3E000	>6000	>6006	
3FFFF	>7FFF		Ende bei 29C020

Adresse	TI99	Bank	Bemerkungen	
40000	>6000	>6000	>9870 >9C70	
41FFF	>7FFF			
42000	>6000	>6002		
43FFF	>7FFF			
44000	>6000	>6004		
45FFF	>7FFF			
46000	>6000	>6006		
47FFF	>7FFF			
48000	>6000	>6000		
49FFF	>7FFF			
4A000	>6000	>6002		
4BFFF	>7FFF			
4C000	>6000	>6004		
4DFFF	>7FFF			
4E000	>6000	>6006		
4FFFF	>7FFF			
50000	>6000	>6000	>9874 >9C74	
51FFF	>7FFF			
52000	>6000	>6002		
53FFF	>7FFF			
54000	>6000	>6004		
55FFF	>7FFF			
56000	>6000	>6006		
57FFF	>7FFF			
58000	>6000	>6000		
59FFF	>7FFF			
5A000	>6000	>6002		
5BFFF	>7FFF			
5C000	>6000	>6004		
5DFFF	>7FFF			
5E000	>6000	>6006		
5FFFF	>7FFF			

Adresse	TI99	Bank	Bemerkungen
60000	>6000	>6000	>9878 >9C78
61FFF	>7FFF		
62000	>6000	>6002	
63FFF	>7FFF		
64000	>6000	>6004	
65FFF	>7FFF		
66000	>6000	>6006	
67FFF	>7FFF		
68000	>6000	>6000	
69FFF	>7FFF		

6A000	>6000	>6002		
6BFFF	>7FFF			
6C000	>6000	>6004		
6DFFF	>7FFF			
6E000	>6000	>6006		
6FFFF	>7FFF			
70000	>6000	>6000	>987C	>9C7C
71FFF	>7FFF			
72000	>6000	>6002		
73FFF	>7FFF			
74000	>6000	>6004		
75FFF	>7FFF			
76000	>6000	>6006		
77FFF	>7FFF			
78000	>6000	>6000		
79FFF	>7FFF			
7A000	>6000	>6002		
7BFFF	>7FFF			
7C000	>6000	>6004		
7DFFF	>7FFF			
7E000	>6000	>6006		
7FFFF	>7FFF		Ende bei	i 29C040

RAM-Map des RAM6:

Unter **Bemerkungen** stehen die alternativen GROM-Ansprech-Adressen!

Adresse	TI99	Bank	Bemerkungen
00000	>6000	>6000	>98C0 >9CC0
01FFF	>7FFF		ROM-Bänke der
02000	>6000	>6002	Page 10 bzw. 0
03FFF	>7FFF		
04000	>6000	>6004	
05FFF	>7FFF		
06000	>6000	>6006	
07FFF	>7FFF		
08000	>6000	>6000	ROM-Bänke der
09FFF	>7FFF		Page 11 bzw. 1
0A000	>6000	>6002	
0BFFF	>7FFF		
0C000	>6000	>6004	
0DFFF	>7FFF		
0E000	>6000	>6006	
0FFFF	>7FFF		

Bisher unbenutzt und frei verwendbar ist folgender Bereich:

10000	>6000	>6000	>98C4	>9CC4
11FFF	>7FFF			
12000	>6000	>6002		
13FFF	>7FFF			
14000	>6000	>6004		
15FFF	>7FFF			
16000	>6000	>6006		
17FFF	>7FFF			
18000	>6000	>6000		
19FFF	>7FFF			
1A000	>6000	>6002		
1BFFF	>7FFF			
1C000	>6000	>6004		
1DFFF	>7FFF			
1E000	>6000	>6006		
1FFFF	>7FFF		Ende be	i 551001

Ausgabe 19.06.1995