
'l/15/83

TEXAS INSTRUMENTS
HOME COMPUTER

Tl PILOT
Ret:1uire:: Peripheral EJ1.pansion SvstE·m, Memory Expansion Card, UCSD p-SystE·m•
(P-Code Card and Editor/Filer/Utilities Diskette), and Disk Memory System
<Disk Drive Controller Card and at l,?c,st one disk drive). Optional Solid

TH
Synthiasi:er required to use speech capabilities.

A pro::iramming language designed especially for the development of Ccmputer
Assisted Instruction progr~ms 11ith the TI Home Computer.

UCSD p-System is a trademark of the
Reg;;nts of the Uni·,ersity of California.

Copyright c 1983 Texas Instruments IncorpQrated

(inside front cover)

Qui~L_Guid~_ic_II-flLDI

Accept CA:) section 5.4 f'3ge xx
Compute cc:) section 5.9 Pc,ge xx

Dimension <D: I section 5.10 Page vv
hh

End <E:I section 5.8 Page xx
Execute Indirect CXI:l section 5.11 Page xx

File Input <FI:I section 5.13 Page xx

File Output (FO:} section S.12 P-.:1,ge xx

Graphics <G:I section 5.14 Page xx
Jump (J:) section S.6 Page xx
Maleh (M:I section 5.S P2;;e xx
Problem iPR:l section 5.1 p.3ge xx
P<emark CR:) section S.2 Page xx

Sound <S:l section 5.15 Page xx
Speech CV:) se,:tion 5.16 Page xx
Type <T:) section 5.3 Page xx
Usae <U:l section 5.7 Page xx
Workspace CW:) section 5.17 Page xx

(proposed cover copy)
TEXAS INSTRUMENTS

HOHE COMPUTER

TI PILOT

Require~: Peripheral E:);pansion s...-st~m, Memory Expansion Card, UCSO p-SystE·m*·
< P-Code Card and Edi tar/ Filer/lJtili ties Diskette), and Di,k Memory System
<Disk Drive Controller Card and at least one disk drivel. Optional Sol~

Ttl .
Synthesizer required to use speech capabilities.

A proJramming language designed especially far the development of Ccmputer
Assisted Instruction progr~ms with the TI Home Computer.

UCSD p-System is a trademark of the
Reg.ants of thr; University of California.

(Tit.le page)

TI PILOT

Copyright c 1983 Texas Instruments Incorpor ated

P;.ge 1

SECTION
1.1
1.2
1.3
1.4

1: GEIIERAL INFORMATION
Equipment Requirements
Using this Manual

TI PILOT
Table of Contents

Developing a TI PILOT Pros .-a11
Special Keys

SECTION 2: GETTING STARTED
2.1 Setting Up the System
2.2 Entering and Saving a Program
2.3 Running a Program
2.4 Running the Demonstration Program

SECTION 3: TI PILOT TUTORIAL
3.1 PILOT Immediate Mode

3.1.1 The IL!!!! Instruction
3.1.2 'Jariables and the C!Jm£!.1~ Instruction
3.1.3 The Oilll!!.D,-iCUJ Instruction
3.1.4 The Gur<bii:ai Instruction
3.1.S The SQ!Jcd Instruction
3.1.6 Tbe 5£,:!!i:b Instruction

3.2 Demons tr a fion Programs
3.3 Pattern Editor
3.4 Simple Programming

3.4.1 The Bc.i::22:!. and tla:!.c.b Instructions
The V and N Conditioners

3.4.2 The 1.um.e Instr•Jction
3.4.3 The B~m~cli Instruction

SECTION 4: THE FORMAT OF A TI PILOT INSTRUCTION
4.1 Labels
4.2 Operation Codes (Op-Codes)
4.3 Modifiers
4.4 Conditioners
4.5 Relational Expressions
4.6 Text-!'ield
4.7 Data Types

4.7.1 Numeric Data Types
4.7.1.1 Numeric Constants
4.7.1.2 Numeric Variables
4.7.1.3 Numeric Arrays
4.7.1.4 Numeric Functions

4.7.2 String Data Types
4.7.2.1 String Constants
4.7.2.2 String Variables
4.7 .2.3 String Pseudo-•Jariables
4.7.2.4 String Functions

4.3 Syste~ Variables
4.8.1 Answer Counter c;:A>
4.8.2 Answer Buffer (~8)

SECTION S: Tl PILOT INSTRUCTIONS
S.1 Problem--PR:

5.1.1 Options
5.1.2 Examples

5.2 Rem,-rk-R:
5.3 Type--T:

5.3.1 Text.-F,ield Types
5.3. l.1 Numeric Constants
5.3.1.2 N•Jmeric Variables
5.3.1.3 String Constants
5.3.1.4 String Variables

5.3.2 Modifiers
5.3.3 Conditioners
5.3.4 Relational Conditioners
S.3.S Continuation of the Ty pe fostructian
5.3 . 6 Using the Type Instruction for Screen and Cursor Control
S.3.7 Ex,-mples

5.4 Accept-A:
5.4.1 Oyerriding Automatic Editing
5.4.2 System Variables (%Band ~A)
5.4.3 Using Variables to Accept a Student's Response
5.4.4 Accept Single
5.4.5 Examples

·5 .5 Match--M:
5.5.1 Match Instruction Special Features

5.S.1.1 The & Matching Feature
5.S.1.2 The ' Matching Feature
5.S.1.3 The 7. Matching Feature
5.S.1.4 Combinations of &, ', and ,.
5.s.1.s The* Option

5.5.2 The S Modifier
S.S.3 Au tomc.tic Jump Option
5.5.4 Examples

.5.6 Jump--J:
5.6.1 Destinations of a Jump Instruction

5.6. l.1 A Label
S.6.1.2 @A
S.6.1.3 @M
S.6.1.4 @P

5.6.2 Using -Conditioners with the Jump Instruction
S.6.2.1 The '(es (V) and No (N) Conditioners
S.6.2.2 The Error (E l Conditioner
5.6.2.3 The Last Relational Conditioner (Cl
S.6.2.4 The Digit Conditioner

5.6.3 Relational Expressions
5.7 Use-U:
5.8 End--E:

5.8.1 Destination-Field
5.8.2 E.-:a10ples

Pa.ge 3

5.9 C0mpule--C:
5.9.1 Numeric Cons tants
S .. 9.2
5.9.3
5.9.4
5.9.5
5.9.6

~!umeric Variibl~s
Numeric Arra,.ys
Nume!"ic r-ur,c t:...on=
String Constant:;
String Variables

5.9.7 String P~eudo-variables
5.9.8 String Functions
5.9.9 System 'Jari~.ble ,:A <Answer Counter>
5.9.10 System Variable ZB (Answer Buffer)
5.9.11 Expressions

5.9.11.1 Arithmetic Operators
5.9.11.2 Relational Operators
5.9.11.3 Logical Operators
5.9.11.4 String Operator

5.9.12 Edit Options
5.9.13 Functions
5.9.14 Operator Precedence
5.9 .15 Examples

5.10 Dimension--0:
5.11 Execute Indirect-XI:
5.12 File Output--FO:
5.13 File Input--FI:
5.14 Graphics--G:
5.15 Sound--S:
5.16 Speech-V:
5.17 Workspace--W:

SECTION 6: STUDENT COMMANDS
6.1 GOTO Command
6.2 Escape Camm~nd

SECTION 7: FUNCTIOt,S
7 .1 Numeric Functions

Absolute Value <ABS)
Arctangent <ATNl
Cosine <COS)
Exponentiation <EXP)
Fixed point Conversion <FIX>
Integer Conversion <INT)
Base 10 Logarithm <LOG)
Bdse e Logarithm <LN>
Random 11umber IRND l
Sign of Number (SGN>
Sine <SHU
Square Root (SGRl

7.2 String Functions
ASCII 'J.a.lue IASC>
Charac +.er (CliR)
:=-1oatin9 ?Dint Conversion (FLO>
Find position (!NS)
Lecn9th (L£N)
Strir,g Cunv1::r$ion (STR)

P<-.ge 4

SECTION 8:
8.1
8.2
8.3
8.4
8.5

PROGRAMMH!G RECOMMEl<DATIOl4S
Planning
Progrc\m Structures
Subroutines
Documenta. tion
Increii.sing Progrc1.m Effectivenes·5i

B. 5. l Use ,Personal Names
8.5.2 Use Variety
8.5.3 Use the XI: Instruction to Experiment with Other Instructions

IN CASE OF DIFFICULTY

APPENDICES
A. LAIIGUAGE SUMMARY
B. ASCII CHARACTER CODES
C. CHARACTER SETS
D. TI PILOT COLOR CODES
E. HIGH-RESOLUTiotl COLOR COMBINATIONS
F. MUSICAL TONE FREQUENCIES
G. p-SYSTEM PROCEDURES
H. DEMO PROGRAM
I. ERROR CODES

IHDEX

WARRANTY

Page 5

Th,? •Jse of cump•Jter-bas2d, inter..=1.ctiv~ instructional mnterials hc'.S grown
widely in recent years.. As th~ use of cmnp1.1ter= he1s spread thro•Jgh,Jut t.ne
ed1Jcational "=Pectr,Jm, the ne~d for ?. computer pro'.)r,?.mmir;g lC1.nguage t.hc1.t cln he
readily lee.rn<ed by instructors h.,s grown ,,:cordingl·i· PILOT is on<:? of th"
languages that hav" been developed to fill that need. The name PILOT is an
acronymn for Progr;\mmed Inquiry, L~arning, Or Teaching, and the langu~.ge
originated in the early 1970s to simplify the crea.tion .and delivery of CAI
programs.

TI PILOT is a language designed specifically for computer-assisted instruction
<CAI). With TI PILOT, you can run existing programs 1,1ritten in the TI PILOT
language, or use the UCSD p-System• for the TI Home Computer to:

!o! Develop individuc1.lized and inter?.ctive instructic,na.l pragr.:\mS which
teach a student a specific ;ubject.

!o! Develop drill-and-practice programs to reinforce concepts taught 1n

the c lasi.:.room.

!o! Develop testing progr .:-.ms which =1.u"tom~ti,: t.;,lly =·:wre s1:.ud ,?nt= and chart
the prog~e5s af a class.

!o! Store a variety of information including a student's perfarmanc~,
progress in a cour52, and attend~nce history.

With TI PILOT, yau can develop effective educational programs even if ~ou have
hi<.d little or nc, pro~r.::-.mrning experience.

The term CAI covers a variety of educational programs, including testing,
record keeping, demonstration of concepts, individuc:1.lized drill and practice
for reinforcement and remediation, and simulations that create a
laboratory-like environment. These programs can provide teachers 1,1ith
effecti'le classroom tools.

TI PILOT is .an exp.anded version of PILOT with enhancements th.;.t let yooJ t.;.ke
c,. dvani:ilge 1Jf unique fe=ttures of the TI Home Computer such as spe-ech, sound,
and graphics. The language is designed to be compatible 1,1ith the
UCSD p-System (sold ;eparatelyl developed for the TI Home Computer. (See
section 1.1).

Th,? diskette enclosed in the TI PILOT package contains the TI PILOT
Interpreter, which ~.llows the programs you de.,,.lop to be run ("exc-c:uted"l on
+.he TI Home Computer. Also included on th,? diskette is " series of :, .. mple
programs that you can study and practice 1,1ilh while you .are learning.

~ UCSD p-System is ~- trad.;mei.rk of the rejenf.·3 ,Jf the Univer'!i ty of
California.

P.age 6

1.1 Equipment Requirements

In addition to the TI Home Computer and the TI Caler Mani tor 'or I.he TI 'Ji.tea
Modulator and a television set), the following equipment and software are
,,,;quired for developing snd running TI PILOT rrog.-~,ms.

!a! TI Peripheral Expansion System.
!o! TI Memory Expansion Card.
'o! TI P-Code Card.
!o' TI Disk Memory System (the TI Disk Drive Cantroller Card .ar,d at leist

one Tl Disk Memory Drive).
!o! UCSD p-System Editor/Filer/Utilities Disl:ette (required for program

development>.
TH

!o' Tl Solid_St,t?_~~QQ~
in your program.

!o' TI PILOT Diskette.

Synthesizer, if you want to include speech

You will find it convenient to have at least ane additional diskette to save
the programs and data you develop. A printer can be attached to your wstem
to increase its capabilities.

1.2 Using this Manual

This manual assumes that you are not familiar with the PILOT progr.smming
l,1.nguage. You can learn the language and the fund.amental steps for creating a
TI PILOT program by running the demonstration programs included on the
TI PILOT diskette, working through the tutorial section (section 3), and then
re,,ding the remainder of the manual and studying the ex~,mples included there.

As you study the instructions in sections 3 .3nd 4, enter and run the program
examples which are included in those sections and then experiment with the
instructions by m~,king changes to the programs.

An attempt has been made to .acquaint you with p-S)•stem procedures in thi;
mci.nu..:\l. For tr1ore details concerning these procedures, refer to the
Ed1tor/ Filer/Utilitie~ manu.als.

Page 7

The following sections .;.re included in this manu:o.l.

Section

1. General Information

~- Getting Started

3. TI PILOT Tutorial

4. Thie Format of a
TI PILOT Instruction

S. TI PILOT Instructions

6. Student Commands

7. Data Types

8. Functions

9. Errors

10. Programming
Recommendations

Cun tents

Contains ge>ners.l information about n PILOT,
includin~ an overview of the proce~s of
developing a TI PILOT program using the IJCSD
p-System .a.nd a description of the special keys
used with the UCSD p-Sts tern and TI PILOT.

Describes the procedures for setting up the
system and far entering and running a TI PILOT
prograra. Step-by-step instructions are given
for running the s~.mple programs on the TI PILOT
diskette.

Directs the beginning programmer through a
series of sample activities in order to become
acquc\inte?d with the fund;;\mental instructions of
TI PILOT in bath the Immediate Mode and the
dE•;elopment of a practice program.

Contains a description of the format of a
TI PILOT ins true tion and an oveerview of the
types of data used in a TI PILOT program.

Describes each of the language's instructions.
Numerous examples are included to illustrate the
operation of the instr1Jctions.

Describes the two student commands which can bee
used when .;. program is running. The~e command~
allow a student to control the operation of a
program and are useful also for testing a
program you have written.

Describes in detail the kinds of data used by a
TI PILOT progr.a.m with eaamples of each of the
dat~. ty,es.

Describes the numeric and string functions.
av.,ilable with TI PILOT, including ea :-:amrl,~s c,f
the functions.

Describ,?s the 2rror mes:c1.~es which ca.n r~-::ul t
from running ai. program.

Contains recommendation~ for
creating effective TI PILOT programs.

The r~mainder uf the ma.n1Jal cont.:,ins su~gest.ed procedures should : ·ou o?ncaunter
problems, a number of ~-PPEndic-?s ~hich c.;o.n be us.;.f 11l 1.1hen you ;re d2 ... ·2lcpiri:3
programs, an index li:ting ref,2r-=nc2s to b::y words and ~cipic5 di:-:u:=;ed in the _
:nanual, and we".rr:,.nty infcrr.ic.ti·~n.

Page 8

1.3 ueveloping a Tl PILOT Program

Briefly, this is the procedure for de•,eloping a Tl PILOT program.

1. Define the program- -i)efine- the purpose of the program, and dete rmine
the procedure it will follm, for accomplishing its purpose.

2 . Write the program--First, write on paper the instructions whi.ch make
up the program. Then, after you have reviewed the pro~r.;m, us2 the
p-System Edi tor to enter the program. The Edi tor stores the program
in a TEXT file on a diskette.

3. Run the program---First, execute the Tl PILOT Interpreter. The
interpreter asks you for the n«.me of the course (the pragra.m). Ent2r
the name of the course and Tl PILOT ~.utomatically loads the progr .,m
into memory, translates the instructions, and performs them.

4. Test the Program~When the program runs, test it to make sure it is
working correctly.

S. Modify the Program-If you wa.nt to correct mi·5ta.ke~. or m~.k e c,ther
changes to the program after running it, use the Edi tor to modif y the
TEXT file. Then run the program again to check your changes.

6. Document the Program~-To help others understand the progr;m (and to
help you 1Jnderstand it after you have been .away from it for a whiie) ,
describe the purpose of the program and how it works.

1.4 Special Keys

Note that the < and > symbols indicate function keys to be pre'.=sed and riot
information to be typed. The name <return> is used when the TI PILOT mess.ages
(prompts) on the screen refer to <return> or <er> (carriage return>. Press
the .EifiEll key for <return> or <er>.

To t y pe lower-case letters, press the key with the letter on it. Pressing any
ket for ,nore than approximately half a se,:ond causes that key to be repe.;.ted
until the key is relea.sed.

To type all upper-case letters on the Tl-99/4, use the alpha lock toggle to
change to upper-case. On the Tl-99/4A you may use the al:,h~. lock toggle or
press the 8L.£H0__LQCll key.

To t ype a single upper-case letter on the Tl-99 / 4 when the computer is in
l m.12r-c3.se mGde, sirnul ta.ne-ously press the ~mall sp.;ce key on the l e ft ;ide c,f
tt-.e keyboard or the .S£fCE_EfIB and the key. On the Tl-99/4A, press :31:Jl[I and
t ~u? ke y .

If you have a Tl-99/4A console, it is sugge,:sted that you use one of tt-,e bl C\ nk
ove rlays ~;Jpplie,d with your cumpu-f:.er to meo.ke a special aver!.;,y for TI PILGT.
This can serve as a reminder for operations done with both a number key .;rid
t~,e ECitl key (or the CIEL key) such as <screen left> and <screen r ight> .

P~ge 9

:!-? re i~ c. ref e r e ~..:'= ch i:1. rt_ f or spec 1~l key fLJnction ; u=ed w1 t h the
UCSD p-Sys t em . (Thi s is .,l s o in t c,e P-Code Card and Editor / Filer / \Jtili ti es
mc<. nuals.)

c:del >
, .. ins>
<flu s h>
<break :=

<alpha lack>

sc r1:en left>

<s creen right>

,::1 i ne ,fol>

n
§;
[

l
<et,/eof>
:'esc>

<te1b>
<return>

<up-arrow>
<right-arrow>

·:·do1.Jn-arrow>
<left arrow> or
·'.backspace>

SHIFT F
SHIFT G
SPACE 3
SPACE 4

SPACE 5

SPACE 6

SPACE 7

SPACE 8

SHIFT Z

SPACE 1
SPACE 2
SPACE 9
SPA<:E O
SHIFT C
SPACE

SHIFT A
ENTER

SHIFT E
SHIFT D

SHIFT X
SHIFTS

Fern 1
FCHl 2
FCTN 3
FCTN 4

FCTN 5

FCTN 6 or
ALPHA LOCK

FCTN 7

FCTN 3

FCTN 9

FCTN F
FCTtl G
FCTN R
FCTN T
CTRL C
CTRL

CTRL I
ENTER

FCTN E
FCTN D

FCTN :<
FCTN S

Page 10

Deletes a character.
ln5erts a character.
Stops writing output t.o the ·scre<an.
Stops the program and initiali:es
the S·ys tern.
Suspends the program until this
key is pressed again.
Acts as a toggle to
convert upper-case letters to
lower-case and back again.
Moves the text displayed ~n the
screen to the ·left 20 columns ~ta
time.
Move,s the text display·ed on the
·screen to the right 20 columns ,, t
a time.
Deletes the current line of
information.
Types the left brace<;~).
Types the right brace(~;>.
Types the left bracket([) .
Types the right bracket (Jl.
Indicates the end of a file.
Tells the program to ignore
previous te xt.
Moves the cursor to the next tab.
Tells the ,:omp•Jter to accept the
information you type.
Moves the cursor up one line.
Moves the cursor to the right one
character.
Moves th,:? cursor down or1e line.
Haves the cursor to the left one
character.

SECTIOII 2: GETTWG STARTED

The steps for setting •JP the system and ent12ring, saving, and r•Jnning a
TI PILOT program are included in +.his section. Please read this •><,l<>rial
completely before proceeding.

Use your Disk Man.;.ger Solid State C<1rtridge or the UCSD p-System Fil<er +.o make
a back-up copy of the diskette which contains the TI PILOT interpreter <See
Appendix Gl. Use this copy onl t for your own use. The original should be
kept in a safe place. Initialize one or more blank diskettes for your program
s tor.~ge.

2 1 Setting Up the System

1. Se sure th.;.t all periph,?rals are attached to the computer and turro~d
on. Refer to the appropriate own~r·s manuals for operation details.

2. If you want +.o create or modify a program, insert the Editor/Filer /
Utilities diskette into a disk drive.

If you want to run an existing program, insert the TI PILOT dis,ette
ir,to the first dis!< dri ·,e.

1 . Turn on the~ cc,mputer console. After a short period of
initialiiit.tion, the p-Bystem promptline appears.

MOTE: If you turn on the ,:ompu+.er before inserting a diskette in a disk drive,
you must insert a diskette and then pres5 l to initialize th~ Sy~tern before
rou can proceed.

4. If you want to ,:reate or modify a progr3.m, see "Entering .; nd Sc:t.ving a
Progr .~m."

If you wc\.nt to run .:1-n existing pragram, see "Running -! Program. 11

2.2 Entering an,j Saving a Prvgr ~.m

1. After set.ting up the system, pr,ess E for E(dit to la.ad the Edit.or.

2. Refer to the IJCSO p-S·,..stem Edi tor manual for· det...;iled dir·ei:tians c:1
entering a program. When 1'0IJ ha.vie completed your progr.~m, press tJ
for Qluit. Then pres•~ for Wlrite.

3. If you haven't already dor.e so, insert. the diskette on which you ••ish
to save the program.

4. Enter th,~ filename for the p!'ogr .~m and press <return">.

5. In response ta the message

Elxit or R(eturn t.o th<e Edit.or?

~~ter ~ to return ta the p-S: stem promptline.

2.3 Running a Program

1. If you have only one disk drive and you turned on the computer with a
diskette other th .. n the TI PILOT disko:ttP. in the drive, insert the TI
PILOT diskette in the drive and select the I<nitialize command by
pressing I~ After reinitializing, the p-Ststem promptline is
displayed again.

2. In response to the p-System promptline, select the X(ecute command by
pressing i. The computer then displ .. ys the following prompt:

What file?

Type the filename as

tn:PILOT

where n is tbe unit number of the disk drive containing the TI PILOT
Interpreter diskette and PILOT is the filename. Then press
<return>. The following chart lists the availe.ble disk drive unit
numbers.

Device Unit Number

First disk drive
Second disk drive
Third disk drive

t4
ts
19

See the UCSO p-System Filer manual for details c,Jncerning unit names and
numbers.

llDTE: If problems occur, use the V(olumes command in the Filer program to
verify which disk drives are currently being recosnized by the system. If not
all are being utilized, insert a p-System volume into each drive and •Jse the
I (nitialize comm .. nd to restart the system.

3. The screen displays the message

PATTERN FILE <PATTERNS):

Type the filen .. tt,e of the file containing any special ch~.r~c:ers t~.e
program uses and pr'?ss <return>. If there is no such file, or if the
filename is PATTERNS, just press <return>.

NOTE: To use the def a.ult file PATTERNS, this file must be in unit t'I or be on
the volume set as the .e..c.ef.i.L~Dlum.e. A prefix volume is the first unit ~he
system reads from when a filen .. me does not contain a unit number or volume
na111e. If a prefix volume has not been set, the system uses unit t'I as the
pret1x volume. The prefix volume can be set with the Filer P(refix command
and can be verified with the V(olumes cor;,;r,ar.:t.

Page 12

The 3creen di;.plays the mc-s:S.:\ge

COURSE:

Pl,ace the di ·skette tha.t con+..;.ins the progr"m in a. disk drive. Ent.er the
disk drive number, ~. colon (!)-: 21.nd the nc1.me of the progr'",m. F,:,r exd.mPl~,
if the name af +.he program is TEST and it is on a diskette in Disk Dri·,e 1
(unit 14), enter

14:TEST

and the computer runs the progra111.

S. When the program finishes running, the p-System promptline re,.ppea.rs.

2.4 Running the Demonstration Program

As an example of the procedure far running a TI PILOT program, you can run a
program already on the Tl PILOT diskette.

1. Be sure that all periph;,?rals are att,.ched to the computer and turne,j
on. Refer to the appropriate owner's manua.ls for product deta.ils c:1.nd
the P-Cade peripheral ilanual for p-System oper,.tion details.

2. Place the TI PILOT diskette in the first disk drive.

3. Turn on the computer console. After a short period of
initialization, the p-SystEm pr,Jmptline a.ppe:o.rs.

Pc:o.ge 1:)

4. Select the X(~cut~ comm~nd by pr~s5ing ~- The computer then displ ays
the following prompt:

What file?

Enter the following.

t4:PILOT

where 4 is the unit number of the disk drive containing the TI PILOT
diskette and PILOT is the filename.

NOTE: Once the PILOT interpreter file has been loaded, you do not have to
reload this file again (with the X)ecute command) each time you want to run a
TI PILOT program. As long as no other programs have b'='ein loaded or exec,Jted,
you can restart PILOT by pressing U (for Ulser Restart) when the p-5ystem
promptline is dis.pla.yed.

S. When the screen displays th~ mes~ag~

PHTTERN FILE (PHTTERNS):

press <r .. eturn>.

6. When the ·;creen displays the message

COURSE:

Type the following.

DEMO

and the computer runs the . program. The name DEMO stands for
DEMOnstration. (It is not necessary to precede the filename DEMO with a
unit number if the p-System was initialized with +.he PILOT disl;ette in
unit t4.)

Respond to the program as it directs you. Practice activities are included in
section 3.

SECTION 3: TI PILOT TUTORIAL

This section i\5sumes thilt you have had limited e,perience with the TI Home
C.:;mp•Jter, the p-System, or with computer programming. It is not intanded ta
be a comprehensive course on TI PILOT or computer progr~.mming; rather it is
intended ta acquaint a newcomer ta TI PILOT with many of the TI PILOT
instructions ilnd to gfve a s.smpling of haw a progr.~m might be developed. If
you have little previous programming experience, begin working in this
section, consulting the other m,>nuals for set-up instructions.

It is recammendad that you study all of the m,>nuals that accompany your
computer equipment a.nd software. These include manuals for the Peripheral
Expansion System, the Disk Memory System, the P-Code Peripheral Card, and the
Editor/Filer/Utilities program · diskette.

If you are familiar with the UCSD p-System, have read all of the
above-mentioned manuals, and are proficient at computer programming in a
~anguage other than PILOT <such as BASIC or ·rascal), ;-ou may want to proc eed
to the referer,ce section of this manual.

P7'ge, 15

J. 1 C•e:nonstra tion Progr 1m

The demon ; tr~ti eo n pr,:.:igr 21.m e n.:; bles yG1J to s ~mpl!? s e veral different progr~m
s::ctions within ar1e progr ~m. This con gi 'le you an idea of the types of
PrGgra.ms you might deve:op i n TI PILOT. After choosing DEMO as the co•Jrse
(; ee the procedures outlined in s ~ction 2.4, "Running the Demonstrcttion
Program 0), type your first n<c< '!Tle, press <return> , .and r-=~d the explan-"tion on
the screen. When you are ready to continue, t ~ pe Y (for Yes>.

Then choose a program section <other then IMMEDl from the menu, type GOTO c,.nd
the section n.;me (GOTO MATH, GOTO '.'ERBS, etc. l depending on which progr .,m you
select. Wait until section 3.2 (below) before you try the Immediate Mode
progr.~m <IMMEO). Follow +.he dir,:,ctions on the screen and answer the ques tions
or problems, if any, as they are pre-sented. When the program ends, you .;..re
returned to the menu.

You can leave the DEMO progr .;m hy hping GOTO ENO a nd pressing <r,aturn>.

3.2 PILOT Immediate Mode

Note that the first program sect.ion listed on the OEMOnstri\tion progr ,,m menu
is IMMED, which stands for Immediate Mode. Type GOTO IMMED and press
<return>. In the Immediate Mode, the comp•Jt.er immediately performs the
i r.-:.truct ions you gi'le to it. In t his 3e,,:tion, we will experiment with s eve ra l
oi the instructions in the TI PILOT programming language.

There are seventeen instructions in TI PILOT. Each instruction ha~ an
a bbreviation, which is callE·d a n op-code (operation code). An instruction
o p-code m1Jst be in c3.pita.l letters. For c,Jm.'enience in this exeri:i~-e, put the
BLftl8..LDCll key in the locked idownl position. (This key is at the l o~er
left-hand corner of the T!-99/'lA ke y boa rd; press S.E:9CE-6 on the TI-99 / 4
keybo.:1rd. l This causes all letters typed on the· keyboc,rd to be capital
letter'3 but does not. af-fei:t tho:1 number or punctuation l<eys.

!Jhen an instruction op-c,:Jde is given to tt",e computer·, it is alweo.y s immediatel y
followed by a colon C: l .

3.1.l The I:!£~ Instruction

Enter the following (type the line, correcting any a,istakes with <left-arr ow>,
and then press <return> >.

T: THIS IS A MESSAGE

The "T" is the op-code for t he Ty p,a i nsetruction. It tells +.he c,Jmputer to
display on the screen what.ever follows the colon. (This is simil a r to a PRINT
or DISPLAY comm.;nd in other progr.smming l.;ngua.g<?s.l This displayed text i~
c.;.lled the +.ext-field. The S?-'\Ce .;_fter the colon is optional; however, it is
used throughout this man•Jal to :how ttw.> div ision between instruction op-code
and text-field.

Notic;? that the text-field is displ,;.yed exactly as it was t y ped. The text
field can CQnsist of any kind of ch>:?.f'c1.ctEr, including both upper- =tnd
! -:iw2r--:ase le-+.ters, numbers. FtJnctuation, :,pc,.ces, or other s·,-mbols Cup to 30
c h.;.r.;.ct~rs in ~ne text-field).

Page l.S

Experiment by entering several different Type instructions, using difierent
l:inds of characters. Use <left-.~rrow> to backspace and correct mist.;kes. Be
sure to press <return> after each instruction to view the resulting di:.play.

Th0ugh only forty characters per line are vi~ible ~t ~ny one time, the
p-System allows far an eighty-column display. To see how this works, enter
the followir,g instruction:

T: NOW IS THE TIME FOR ALL GOOD MEN TO COME TD THE AID OF THEIR COUNTRY.

Notice that as you type i;ore than forty chars.cters on one line, the screen
shifts to tt,e next "window". The full ei9ht>·-column 1,1idth is di·,ided into
three overlapping windows of 40 columns each.

<:-----------2MD WINDOW--------------->

<---------1ST WINOOW---------><-----------3RD WINDOW------------>

•:-------------------FULL SO-COLUMN LINE WIDTH---------------------::,

After pressing <return>, you can view the displayed text by using E!:ItLZ and
E!:.lli...E (<screen left> and <screen right>, respectively). These keys allow you
to use the three display windows. With the first window on the screen, press
<screen right> once to view th= second window .:1,nd once mare to vie 1N the third
window. Tht:n press <scre~n li:ft> to go back to the se,:ond window ~.nd once
more to return to the first window. Experiment with these keys until tou feel
comfortable with this feature.

J.1.2 Vari.i.bles ci.Od the Ccm£u1= Instructian

A varic:\ble is a cha.r.acter that is assigned a posticula.r value. For e x.;o.mple,
if X=4, then the variable X has the numeric value of 4. In TI PILGT, the
Compute instruction is used to assign numeric values to variables. The
op-code for compute is C.

Enter the iollowing instructions (remember +.o press <ret•Jrn> after each
line). The comnents on the right help to explain each instruction.

c: x=q
T: X

What happens? The computer
Compute instruction, but it
W~.en the Type instruction is
Now enter this instr1Jction.

T: tX

Assigns the value of 4 to the variable X.
Tells the comp•Jter to display the ch~.rac+.er •x•
on the screen.

doesn't perform anything on the screen af ·tEr the
now holds the value for the variable X in memory.
entered, only the character "X" is ci·::pl ,IYE"'.L

Tells the computer to display the numeric 'lalue
of X.

Pa.ge 17

Notice that -1, the ~lu:: of X, is displ::1.ye,d. Therefor~, thl? t ~ign stands f,1r
"the current value of. 11 Now enter this instruction.

T: THE ANSWER IS tX Tells the computer to display "THE
ANSWER IS" a.nd the value of X. <Don'+.
u~e -~ period.>

If you want to use a period at the end of this statement, type a space aft.er
the character X and then a period.

The variables studied above are oum~.ril: y,i.r:ubles because the values assigned
to the variables are numbers. Letters, words, or whole lines of text can also
be ctssigned to variables. A set of characters assigned to a variable is
called a "character string." Therefore, this type of variable is called a

p,a;ir.ios yar:i~ble.

3.1.3 The Oimeo=iQO Instruction

A string variable in TI PILOT a.lways consists of one alphabetical character
(letter) and a dollar sign ($). AS, HS, and YS are all string variables.
8Efore you can assign a value to a string variable, however, you have to tell
the computer how many characters are in the string, so that it will reserve ·
that mctnY spaces in memory. Do this wi t:.h ,:\ Dimension instruction (D:). Er,tcr
the following instructions.

D: H$(3l Tells the computer to save three spaces for
the string.

c: H$="DOG" Assigns the character string "DOG" to the
variable H$.

T: MS Tells the computer to display the cha.r .3.cters
"M$".

T: M Tells the comp•Jter to display the value of
character string M$.

In the D: instruction, notice that the dimension (size) of the string is in
parentheses. In the c: instruction, notice that the string, "DOG", is in
quotation marks. In the first T: instruction, the computer merely displa,s
the characters "t1$". In the next T: instruction, however, notice that +.he
string variable, MS, has i!.n dollar sign in front. of it. The t sign functions
as the t sign did with numeric variables, meaning "the current ·,.;lue of.• tfow
enter the following instruction:

T: THE M CHASED THE CAT.

Notice that there is an extra SP.ace ~Her the string varii!.ble Mt :;a that a
space will be displayed between the words DOG an~ CAT.

:!:n the Immediate Mode there is a convenient way to dimensfcin three string
'Jariables with one instruction. If you ~nter the instruction.

IJ: ABC

the string variables G$, 8$, and Ct are es.ch set to the si:e of 256. This
instruction is a Use instr•Jction, whic'l c:111~ a subroutine in the Immediate
Mode pro2r.;.m.

P::tge 1C

3.1.4 The G.c.::.!!llil:::; Ir.st.ruchon

The Gre\phics instrtJction <G:) allows you ta use colors and moving pictures
(sprites) in your progr.e.ms. Enter the following instruction:

G: F12;87

The ch,,racters on the screen turn dark green. '(ou instructed the computer to
change the f.!lc~scouo~ color (with the F command) to color code 12 (dark
green). Normally the characters on the screen (foreground) are black (color
code 1) and the rest of the screen (background) is cyan (a pale blue, color
code 7).

Now enter the following instruction:

G: 815

T~is time you have altered the b~£QW.ruf color <with the B command) to color
code 15 <white).

You can change the color of both foreground and background in a single
Graphics instruction. To do this, type a semicolon between the commands.
Enter the following.

G: F15;B'I

This time you changed the foreground to white and the background to a dark
blue.

Below is a list of the sixteen colors available with the TI Home Computer ar,d
th;; TI PILOT code numbers far each. This same list is in Appendix O in the
back of this book.

Colar

Tra1,sparent
Black
Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan

Cadet

0
1
2
3
4
5
6
7

Color

Mediu111 Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta
Gray
IJhi te-

Code t

B
9
10
11
12
13
1'1
15

Nute: Though these are the same colors used in TI BASIC, the code numbers
range from O through 15 in TI PILOT. The ,:ode numbers in TI BASIC range from
l through 16.

Surae foreground o.nd backgr-ound calar cov,binatians eo.re more reio.dii.ble than
others. Enter the folowing instructions and ob:erve the color ,:hanges when
each one is performe-d. Then choose your own colors from the list abo\1e ~eo.nd
from Appendix E) and experiment with your own Graphic: instruction:.

P .. •.ge 19

G: F6;G11
G: F11;84
G: F=;815
G: Fl; 810
G: F~;GlS
G: Fl ;1313
G: F6;81'!
G: F12; 811
G: F13; 815

You ha.ve proba.bly notice>d that CJhen the screen is filled with instruction
lines, the lines 11 sc:roll" from the bot.tom. To clear the screen 'tOU can u~e
the following instruction.

G: T

Try it. The T command erases the screen and·sets the screen to ie.::.! ~Jde (the
mode the computer is already in). The cursor is returned to bl:lllle position
(upper-left-hand corner of the screen).

There ar~ many other commands you can use with the Graphics instruction. Many
of these involve SE.Cii!;:S, which en.;ble you to incorporate moving grc1.phic; iritu
your programs for vi~u~l rewards for correct ;nswers, illu3trations, or simply
something interesting to hold the students' attention while they are learning.

Enter the following Gr.aphics instrOJction, ma.king sure that the semicolons and
commas are in the right places):

G: P;Xl;SS,<!2,S,100,100,40,0

You should see a large asterisk or st~r moving across your screen from l~ft to
right. As in the Graphics instrOJctions with the foreground and background
,::;mmands, there is a semicolon between commc:1.nds. The options or pa.r.amei:.ers
within a command are separated with commas.

The P command erases the scre~n and sets the screen to .2ill~£D mo~:. In this
mode, the display is 32 columns by 24 lines, resulting in larger characters on
the scre<!n. This mode also .;.llows you to use sprites. The Xl command set.s
the sprite magni ficat.ion to doOJble, making the asterisk a larger character
than it would nonnally be.

The remainder of the instruction selects the options concerning the sprite.
The S command creates the sprite .;.nd defines it as sprite number S, The
number 42 defines the character p.;.ttern. 42 is the character code for the
~sterisL (The codes for all of the predefined ASCII ch;ractecs are listed in
Appendix 8 in the be.ck of thi~ book.>

P,;.ge 20

The nc ~t Gumber, S, selects the for·Qgraund color of the sprite, which is a
light blue. The lYo 100s select the x-position ind y-position, respecti~ely .
([~ch ch~racter is.generated by an 8 X 8 dot matrix, resulting in 255 pos~ibl~
positions for either x- or y-position~, though any y-position over !91 is
below the range of "the screen.) Thi~ sets the posi ~ion uf the s::,r i +.e ,Jn the
4: Crt:::-en. The numbe-r 40 =.i=t.s the x-veloci lY: or horizontal spei?dr of the
sp rite. The last number, 0, sets the y- veloci ty, or vertical speed, of tt .. ~
3prite.

X-veloci ty and y-velaci ty can be from -128 through 127. A value .:lo·se to zero
is very slow. A value fa.r from zero is v er:,· fast. As you can see, when the
sprite comes to the edge, of the screen, it dis2ippe3.rs and reappears in the
corresponding position on the other side of the screen.

A posi live x-,veloci ty (as in this case) moves the sprite to the right and a
ne~ative ' value moves it to the left. A positive y-velocity moves the sprite
do~n and a negative y-velocity moves it up.

In this case, since tt,e y-veloci ty is 0, the sprite has no vertic~l movement.
lf both x-,veloci ty a.nd y-veloci ty are zero, the sprite is stationary. If both
•-velocity and y-veloci ty are non-zero, the sprite moves .;.t an angle in a
direction determined by the actual values.

Try changing the optiGns of this Graphics instruct.ion. Enter th·= instruction
c.s before, first ch~nging the fore9round color of the sprite. (IJ~.e a nother
number of your choice from the color code chart rather than the number 5.)
Then try changing the character pe\ttern from an asterisk to another
c~11:1.ra.cter. (Far ex.?.mple, use a number 36, 35, or 33 rather than the number
q2. Consult the ASCII Character Codes chart in Appendix 8.)

Then try changing the x- and y-veloci hes, using the inform.a. lion given in the
lc<.st few paragr ,.3.phs. Try si:veral different combinations of x- and
y-velocities.

Hr,en you are finished experimenting with " spri le, use the ha.l t-spri te
command, which is H followed by the sprite rumber. t:!!JIE: If you do not •J,e
this command, your system will be slowed doYn. To return to the text mode
< normal size ch&racters l, use the T command. Enter these commands "'i th this
instruction.

G: T;HS

P~.se 21

3.1.S The S!lu.m1 Instruction

The Sound instruction (S:) enables)'OU +.o 5End io.udio :.ignals +_o the ~i:.1Jdent in
the form of beeps, taries, or music.

Enter the foll0\.ling in:;truction.

S: 1,C;VlO;T262,lO;P

This instruction tells the computer· to process the gi•,en sound list. The TI
Home Computer has four "voices,'' that is, three tone generators ~.nd one noise
ge,nerator. The 1 in +_he above instruction selects voice 1. The C corr.mand
c.le,;.c.!'. the sound list for voice 1. The V command ;;ets the '>!Ql\.tme at 10 (on a
scale of Oto 15). The T command selects a i!me with a pitch of 262 cycles
per second <middle Con a piano) with a duration of 10 beats. The P command
ends the sound list and tells the computer to .!?l..i.:t the sound list. To be~in a
new sound list the C command must be used to clear or erase the inf,Jrmation
from the old sound list.

Now enter this instruction.

s: 1,c;v1o;T262,10;TS23,10;T131,10;P

This is the same instruction except two -:o.ddi tianal tones cl.re used. Fir~t ·rn1J
hear middle C, then the Can octave below, and then the Can octave above
middle C.

Now enter the same instruction except add 550; before the P command. It will
look like this.

S: 1,C;V10;T262,10;TS23,10;T131,10;SSO;P

Notice how the ,speed of the tones played is affected by the S command. This
cammand alters the !,..eomeQ of a series of notes. The number immediately
following the character S (the tempo selected) can r~nge from l to 327~7.

Experiment with the Sound instruction by using different volurr.es, pitches,
durations, and tempos.

3.1.6 The 81.,.,rh Instruction

~DIE: The Solid S.!.:ii2 Se~2~b
to function.

TI1
Synthesi::er is ret::1uired for thi3 in5+.ruct:.ion

With the Speech Instruction you can send verb~l direction~ or r1?inforcement to
the student. The co11puter speaks the string of "'ords contained in the string
variable following the tJ: instruction.. Space for the string va.ric<.ble must be
reserved (by a D: instruction) and the variable must be defined (by• C:
instruction) for the V: instruction to work. Enter the instruct:ons ~elaw ~nd
!.i=ten to the re~ult.

!): F$<80l
C: FS="I AM A COMPUTER"
'J: F$ Computer ~p~:;.ks .+:he wor·ds cantairiC!'d

in the ~tring v .:1.ric:o.ble FS.

Any of the 373 words and phrs.ses included in the Speech Synthe-sire-r'; re- ide-nt
vocabular~ can be ;poken by the comp1Jter. A liC:t of this voc:C".bulc'.ry i3 n t.h•'?
booklet which acco~panies the Speech Synthesizer. Experiment by redefin ng FS
to bE :. different phrase (with C".nother C: instruct.ion) ~nd makir,g the comput.,:r
~Feak it (with another v: In5truction>.

These are the TI PILOT instrOJctions you h,we studied t_~,us far:

T: Type
c: Compute
o: Dimension
G: Graphics
s: Sound
v: Speech

To return to tbe menu from the Immediate Mode, t_ype GOTO MENU and press
<return>. To leave the DEMO progr"m and proceed to section 3.3, type GOTO EtlD
and press <return>.

3.3 Pattern Editor

The Pa.Hern Editor feature of TI PILOT offers an easy way to create ar,d define
)'Our own characte-rs or patt~rns and the-n store them in a file far l.:tter u:Se.
With the Patte,·n Edi tor you ca.n create your own font for the a.lphabet, create
special alpha.beticaI characters for a langua.ge other thdn English, or ere.a.le
special graphics characters for your use with gr,.phics applications.

A video screen is divided into thousonds · of tiny dots called pixels. In Text
Mode, ec.ch printing po'5i tiun ,:in the screen i ·3i made up of 48 of these dots <an
8 X 6 block); in Patterns Mode, each printing position on the . screen is made
up of 64 of these dots Can 8 XS block). The computer disploys a charact=r or
pattern on the screen by turning the dots th.,t are ,, p"rt of the character
"on" and turning the other dots within that printing position "off.•
S i:,~cif i ca.llY, the dots thd.t ci.re turned "on" -:ir·e the foreground color, and th,::
dots that are turril?d "off• ;;.re the b.3ckg ro1Jr:d color.

l'our disl<ette contains two identical files, buth of which contain the st.;r,dar-d
p-System patterns. 1he filenei.rnes for th·==-e files -=\re PATT'.::~MS .:\nd
PATTERNCOPV. The Pattern Edi tor enables ~·au to cha.nge existir.s ,:horac te,rs or
add characters to the PATTERNCOPV file.* \'cu can a.l-5o cc:aa.te other pattern
files.

Pase 23

To load the Pe.ttc;rn Editor progr .,, m iroto yc,ur computer, place the TI PILOT
di;~et.te into Di s k Drive 1 {unit ~). Then, with the i:::+.and2i.rd p-S ~·i: tem
Pr1Jmptline at the top af the screen, do the following.

1. Command: E(dit, R<un,
[p-System promptlinel

2. What file?

3. Initializing ••• (dark blue screen)
N2.me of pattern file <PATTERNS):

4. Reading pattern file •••

1. Press Xlecute.

2. Enter: t4:PATED

3. Enter: PATTERNCOPV

\,J8Et.!lllil: Ali,ays l:>ad the PATTERNCOPV file, rather than the PATTERl'JS file, ..,h,2n
making changes to existing patterns. Otherwise, you will change <and ther,eby
lc~e) the predefined char .3c-f:.er·; 1Jsed for pro9r3.m display.

[Display-pattern model

[8 X 8 grid with blinking cursor]

...1_2_...3...._1,_5-6......Z_A_
1~ '> >1
2> "> , > _.2_l_....::_::;2
3LLLL_2__-'_ .• _2:.___2._:,3
4:::__....:::__2:.._ > 2;_,2 __ 2A
SL '>) > >~->~ __ >S
6LL?__2__2: __ ·::._L.2_?.:6
rL_.> L_> > ~:- > > >7
BLLl--L-.2_.2._>__2._l8

E,S,D,X: Dro.w
e,s,d,x: Mc~e cursor
<space> toggle
V)save pattern
P)pattern mode
U)remove p.;ttern

< next menu)
F i change foreground color
Bl change background color
1) define single ch.a.racter
4) definic: ~uad chareo.,:ter-
n .:!ear p~_t_tern U lis"t p.;tterns
:) inver~ pattern

(l)qui t
G)get pattern
Tl text mode
?)next menu

PATTERN

SINGLE

On the s creen you see an 8 X 8 grid ca rows ~nd 8 coluinns) with the cursor ~ t
the top-l<eit corner. This grid shows, greatly enlarged, one printing position
in Pattern Made. The row numbers are at the sides of the grid and the col~mn
numbers are at the top of the grid. Ea.ch square in the grid represents one
tiny dot on the videa screen. At the bot tam of the :>creen >'Ou h~ve cs. "mer.u, 11

or ~~ lec t ion list of ~vail ~ble cptions. Notice that the menu lists T for Text
!'I.od e . Press I.

Now an 8 X 6 grid (8 rows and 6 columns) appears with the same menu at the
bottom of the sc~een. This grid shows, greatly enlarged, one printing
position in Text Mode. Again, there are row numbers and column numbers at the
top and sides of the grid. Now press f to return to the Pattern Mode screen.

As displayed on the menu, the arrow keys <E, 5, D, and Xl are used to move the
cu r sor. If the arrow keys are in upper-case mode, the cursor will draw a line
as you move it. If the arrow keys are in lower-case mode, they will move the
cursor without drawing a line. If a pattern is currently di~played, the
movement of the cursor in upper-case mode will •toggle" that position; that
is, a ,:olored square will become blank and vice versa.

With the arrow keys in lower case (flL£1:J£LJ..DCK in the up position), move the
cursor around the grid by using the arrow keys. The SfBCE..BBB is a toggle
switch betw<een upper- and lower-case. If you press the SfGCE_B.&ll. once, i OU

change to· upper-c ase. Remember that you can ad var1ce tt',e cursor one ;;qu2-.re :l t
a time or hold the key down longer than one se,:ond ta automatically move the
cursor. Notice also that the pattern you are creating is displayed at the top
ri3ht of the screen in its normal size.

You can use the G(get pattern command to view some of the patterns stored in
the Pf.<TTERNCOPV file. Press I ior text mode, and then press !i to get a.
pa ttern. Enter 32 as the ASCII code for the space character. Your grid
becomes blank. You can get pattern 32 anytime you want to clear or er,se the
grid. Now get patterns 36, 47, 65, and 77 (by pressing G and entering the
4SC!I code number) to view the$, I , A, and M characters. Notice that the
ASCII c c:,de number of the currently displayed pattern is displayed on the right
3i de of the scre~n.

You c a n experiment with any of the existing patterns by changing them an the
grid. You will not alter any of the existing patterns in the PAT file! unless
you Slave the altered pattern to the same code number, which will replace the
old p~ttern with the new.

The ec.siest 11ethad for developing .;. pattern is to leave the arrow ke·;s in
lower case and 5irnply use the S£9C.E..Ee.E to add a dot to the pattern. Let's
ma. ke a checkerboard pattern using this method. First, 11ake sure the keyboard
is in lower case mode. (Put 9L£1:J£LLD~ in the up posi t ion if you a.re 11sing
the TI-99/4A; press SE8Ci:::-ti if you a.re using the TI-99/ 4).

Pa.ge 2S

G~t Pct ttern J2 i:.o clear the 9rid. Be~in i..ii+.h the ·:ur'.!ar in the
upper-lef t-h;.r,d corn"!r of th"! grid. Press mn,!:!_J3E£Dl:I It.hie ;:: l<e~) to mo•;e the
cursor une ;qua..re down. Pre ss the 5..EfiCE_.80!? to color i.n that :.quarl? (row tw,3,
column one). Now press D!::!Y!:!_flllCIJI.,/ twice and t.he SI'.9CS....B9E age.in to rnbr in

that square <row four, column one>. Continue this ~eiuence until the cur~or
reaches the bottom of column one ..

f!ow pres, RlGl!Lill?EDY once .sr,d !Jf_9E.E!::!!:J (the £ ~ey) once. Press the SfDCE_re.B
to color in the square at row 7, column 2. Press Uf_flll!:DW twice ,,.nd press the
SfflCLlflR to color in the square at row 5, column 2. Continue this se·,uence
until the cursor reaches t.he top of column 2. i'low continue this prccedure
until you have moved the cursor up or down each column to create an
al terna.ting p~ti:.ern of "on" and "off" squares that resemble a checl<erboard.
If you make a mist.ske, position the cursor to the point where tt,e error was
made .snd use the Si'flCE_EflE to "toggle" or reverse the ,:urrent status of th.;t
square (a colored square will become, bl,:11.nk and vie~ .,,.,ersa).

Now that you h.;ve cre,.ted a pa t+.ern, you may want to s,.we it. If you dc;n' t
know what pa.Hern number to use, press L ta list all the patterns currently
defined in the file. You can choose an un•J=ed pattern number or repl~.ce a.
pattern ,,lready in +.he file. Then press Jl (save p;sttern) and enter the
p,Hern numbl?r (from O through 255). If yau decide not to save the pa.ttern
you can tJnter 256 as the pat_t~rn number, and you will lei:'.ve the V command
without any+.hing bl?ing saved.

Press 9 to ?•Jt the pattern gen'?ra+.or in Ouad mode. The screen naw dispL;ys .,
16 X 16 grid and QUAD instead of SHJGLE to denote the mode you are in. Pr.,.ss
G and enter ~S to get pattern 65 (Al. Now the letters A, B, C, and D are
di$played on the grid. Note the order in which the characters are displi<~e1
on the grid. This is the order in which quad characters ._re stored. The
8 X 8 upper-left-hand block displays +.he pat.tern number you desi;inate. The
next three consecutive pattern numbers are automatically as~igned to the
remaining three 8 X 8 blocks. The order that th,.y are assigned is al1aays the
si<me as in the ABCD ex~.mple.

The K command will clear the display· from the grid just as getting p~tt.er'l
number 32 did. The IJ command will re;,iove ., pattern which you designate by
number from the file. Any patterns saved ar roemaved in Ouad mode will also
affect the thr<ae consecutive patterns following the one you specify.

The F .;nd B commands change the fore::iround (on) color and background (off)
color for a pattern. These commands are only for display purposes while in
the Pattern Editor. To display patterns with altered colors in a program, you
must use the Graphics instruction CG: Cn,f ,bl. The I command inverts the
,:h,.racter or p.!ttern displayed.

P~ge 26

Ta quit the P.1ttern Edi tor, press Q. (a.s inJicatcod on the menu). The follo.iing
prompt ~ppears on the ~creen.

Update pattern file (Y/ N):

'/au can press 't. if you want to upd ,-te a pa.Hern file with the p"tterns ths.t
you h•ve saved. If you press 't., the next mess,sge prompts for U,·~ file;n,sme cf
the file you want to update.

Pattern file na111e (PATIERNS>:

At this point, you can simply press <return> ta update the default file
<PATIERtlS), or you can enter a r.ew file n,sme for a :speci.al pat.terns file.

If you do not want to update a pattern file, press~ at the first prompt. At
this paint, you can return to the Pattern Editor (press "J.) or go to the main
p-System pramptline (press~).

Return to editor (y,n)

Press c! to continue to the next section.

~ . .., Simple Prag ramming

A :rnr.puter program is simply an ordered list of instructions thi<t you tell t.he
comp1Jte-r to perform. Unlike in th~ Immediate Mode, the instruction~ are not
performed until you tell the cc;mp•Jter t.o ~erform them. Ui th t.he Edi tor and
Filer programs which are un diskette, you c;.n change your progrc1.m, savo? it for
future use, and perform many 0th':r operations.

If you have at least two disk drives, insert the Editor/Filer diskette into
Disk Drive 2 and press I to reinitialize the system.

If you have only one disk drive, remove your PILOT diskette and insert the
Edit.Gr diskEtte. You will need to insert the Editor/ Filer disket~e each time
you 1aant to perform an Edit or File oper·a tion. Then you will remove that
diskette and re-insert the PILOT diskette, which contains your workfile.

For this exercise, we will assume you have at least two disk drives. Press E
for Edit. Uhen this promptline

No workfile, File <<rel> for none)?

appea.rs, press <return> to verify that you do not have a current workfil~.

The Editor creates a workfile for you. The Edit promptline at the t.op of the
screen lists some of the options available in the Edit program. Press I to
Insert. Notice th.;.t the prompt.line at the top of the screen changes. Now you
a.re re,:,,dy to enter a. program. If you make a 1rtistake, u~e <left arrow> to
backspace and type over it as you did before.

P~_ge 23

3.4.1 The 8:::ce2.!. and tti.!~ Instructions--Th,:; Y and N Condiboners

Enter the following instructions:

T: WHAT IS 6 X 8?
A:
M: 64

TY: THAT'S R!GHT!
TN: NO, TRV AGAIN.

Oi5Pl~ys question to studEnt.
Accepts 51:.udent •s re.-<.::ponse.
Comp<3.res ;tudE·nt 's response with correct
.,nswer to see if they match.
If answers match, this line is displ.;,,ed.
If answers do not match, this line is
displa.yed.

Two new instructions are used in this program. The 8C~E.!. instruction CA:l
rece,ives a student's reply. · The tl=..!.cb instruction <M:l compares the stude,nt's
reply with the corr-ect ans1,.;er (in the text-fie,ld of the Mo.tch insll'uctionl.

l~otice that the last two lines are simply Type instr-uctions with
conditioners. The V (Yes) conditioner causes the TY: line to be displayed if
U,e student's reply dc;es match the cor-rect a.nswer. TN: is a Type instruction
with an N <Nol conditioner-. If the student's r~ply dlles w.i match the cor-re,ct
answer, this line is displayed.

Ch,:ck the program)''OU have 1?ntered for errors. If ·y-ou notice an err,:,r, you
can sti 11 correct it: by using <left-arr-ow>, even if you have already Entered
the line. Just hold .·dawn <lett--~rrow> and the cursor will b.;.ckspace ta the
beginning of one l irle-· and then .jump to the previous line. You can ~.lso use
<esc> <5.e8CE_A on the TI-99/4 and CI.Ill._._ on the TI-99/4A) to "escape"--to tell
the computer to ignor-e the previous text. This is used if you press a wrong
cc,mmand or 1take several 11istakes :.o that you want ta erase and start. over.

When you are s•Jre there are no errars, press <ex Vea"f> <E!:::UEI_C on the
TI-99/4, CIEL.C on the TI-99/4A). This marks the end of your file .;nd takes
you out of the Inser-t mode. Notice that the pr-c,mptline at the top of the
scre~n r-eturns to the Edit options line. Press !l to Quit the Edi tor program.
When the Quit menu app~ars, .pr-ess U to Update the wor-kfile and leave. The
next screen gives you the p-System promptline ;.nd the length of your fil~ ir,
b:,tes (character-sl.

Now you can execute <r-un) your- program just as you have alrea.dy done with
existing progr.~ms. Pr-es, ~ for Xlecute, enter- t4:PILOT in response to "What
file?", pr-ess <return> in response to PATTERN FILE (PATTERNS):, and enter
SYSTEM.WRK for the course (program). This is the ·;ystem warkfile into which
the system saved your program.

Pre~end you are the '5tudent and respond to the, question 1·our progr.J.m
displays.. T}'Pe 6~, press <return>, and you see the a.ppropri.;.te rec::p,Jn:2.. The
progrcur. ends and the p-System promptline appears.

You c:i.n restart the progr .3.m by pressing U for U(ser restart. With this
command you ca.n quickly run a program that is alre::\dy in m'!?mory wi thuut having
the repeat the step1.: as above. U(;er rest~rt must be the first p···Sp:t.em
comrnZtnd used o.f+.er a pro-gr;.ii, is lo..:o.ded into memory. Restai.rt t.he program, 3.rtd
this t ime ,jeliberatel ·1 .;i.nsw-=r the que·5tion inc':lrr-e~-t:.l·;. Uut~ ttat ~···:·u :;ct :o.
different re·5pons2 than on th': ;:;reviou5 program r•Jn:

You can now jO back and edit your progrc1.m to m-;,~e it a little mor~ el,.:i,bor .;\.ts,, .
This time let's call the student by na.me. Press E to return to the Edit
mode. Now your program is displayed with the cursDr at the be3innir,g of vour
pr1Jgram. Pre~s I to insert these lines < be -;ure to pr~s= <return> at the ~nd
of ea.ch line>:

D: A$(10l

T: ENTER YOUR FIRST NAME, PLEASE.
A: A

Saves space for ten characters for
string variable A$.
Displays instructions to student.
Accepts the student's respon~e and
assigns it to A$.

After you have corrected all errors, press <ext/eaf> to enter these lines. As
you can see, you have defined - the dimensions for the string variable,
displayed the instructions to the student, and told the computer to accept the
student's n;;,me and assign the name to the ·,ariable $A.

Now press <right-arrow> until the cur<ear is positioned o·,er the "W" in the
word "What.• Press I to i,1sert the follDwing:

A, (Include a space after the comma.>

Be sure to insert the spaces before and after the comma. Press text/eof>.
The line should r,ow look like this:

T: A, IJHAT IS 8 X 8?

If the line on your screen is not the same as the line above, use <left-arrow>
to backspace to the error and follow the Insert procedure described above to
correct the error. NOTE: Refer to the p-System Editor/ Filer/Utilities manuals
for procedures for other command options.

Now move the curseor to the TY: line and position it over the exclamation point
(!). Press land enter:

'A <Include~- space after the last$.)

Be sure to type a space after the string variable. Presas <est/eof> ;.nd the
line sho•Jld look like this:

TY: THAT'S RIGHT, A '

Insert corrections if ne,:essc1.ry. Now -:nave the ctJrsor to the next lin~ ~TH:)
and insert the :a11e thing, starting •.<i th the cursor over the period. Er,ter:

, A <Include a ~pace after the la:t $.>

Pa.9e 20

Press <ext.leaf> and the line should look like this:

TN: ND, TRY AGAIN, A •

Insert any corrections if necessary.
+.his:

O: A~(10)

T: ENTER YOUR FIRST NAME, PLEASE.
A: A

T: A, WHAT IS 8 X 8?

A:
M: 64

T't: THAT' s RIGHT. MS I

TN: NO, TRY AGAIN, A •

The entire program should now lool< like

Saves space for ten chdrdcters
for string variable AS.
Displays instructions to student.
Ac,:ept.s the student's response
i1nd ,.ssigns it to A$.
Calling the student by nc,me,
displays question to student.
Accepts student's response.
Compares student's response with
correct ~nswer ta se-: if they
match.
If answers match, this line is
displayed (calls student by
ne\me).
If an~wers do not match, this
line is displayed (calls student
by n"mel.

tlow Xlecute the program following the steps as before. Notice the difference
in thi ·5 version of the program.

3.4.2 The l!JmE lnstruction

In the progreo.m as develwp,?d ;o f ,:t r, the progrC'.m ends, r'=.-gardlE·ss of which
;inswer the 3tudent gi•.-es . If th-2 3 f:.•Jdent ar.;,wers the pr·oblem ir,corrl!ctl y , he
or ;he doesn't tiave a chance to 11 TP.V AGAIN. u

lJe cun use the Jump ins+_ruction to c . .:tuse the compu+_er to tr~nsfer to an
earlier or later line in the progr~m. Since we want the student to have
another chance to answer the question, let's jump back to the Accept
instruction. Press E for E(di t, ,.nd then use the C:: down-.srrow> to move the
cursor down past the last line of the program. Press I for !Cnsert, and then
enter the following instruction:

J: @A

This instruction will cause the computer to jump back to the last Accept
instruction. However, you wouldn't want it to jump bacl< if the question wer~
answered corre<:tly. Therefore, let's insert a.nether jump instruction.
Position the c•Jrsor just after the TY: instruction and insert:

JV: CONTINUE

Prr:ss <ext/eof> and position the cur·3or at. the end of th~ progr='.rn, just after
the J: instruction. tJow enter the following:

*CONTINUE

'lour entire pragram should now look like this:

O: A$<10l
T: ENTER YOUR FIRST NAME, PLEASE.
A: A
T: A , ~JHAT IS 8 X 6?
A:
H: 64
rt: THAT'S RIGHT, A !
JV: CONTINUE
TN: NO, TRY AGAIN, A •
J: @A
*COtff!NUE

Page 32

Pr-?ss <ext'e-of:. , pre,s5 Q, ,:,nd pre;.s lj. Then X) ecute the system ...,orki i le.
I.Jhen the program runs, deliberately ansv,er incor·rec tly a fe, . .J times. What
happens?

Now the progr:;1.m keeps running .is long as the ,.:,. nswer is incorrect, always
g1 ·,1in9 the :;tudent another try. I.Jhen the cor·rec1:. ~.nswer is given the program
ends. The last line of th,~ program, *CONTUlUE, is not «n ies+.r•JCtion. It is
c<.\lled a l;;l:;:l. Noti~e that it is marked by an ,~terisk (~). Notice .,lso
that the JV: instruction (with a Y ccmditioner) h~.s the word "CONTINUE" ~fter
it. This instruction tells the computer to jump to the Label called CONTillUE
if the answer is correct. (The computer only recognizes the first :it
cr,.aracters in a label; therefore, it matches the letters "CONTIN" and ignores
the letters "U" and "E". l

3.4.3 The E~m~ck Instruction

The Remark instruction <R:l can be used to to document y-our programs. The
comput.er does not read thi ·5 instruction. Remarks serve as a reminder to
y ::,urself or to ;cr.neone else who may study or further develop your program.
Press C to return tu Edit mode and Insert the fallowing instruction at the
be3inning of the program:

R: A PRACTICE PROGRAM IN TI PILOT

Pre=:s <t?xVeof > . \'01J can now save this progr.;.m under a new filenc\rne. To do
this, press (Huit .nd then press IJ(rite. The following promptline appe"rs:

>Gui t:
'$' <ret> writes to PILOT:SYSTEJ1.IJRK.TEXT
Output file <<er> to return)

Type the new filename .:1.nd press <return> . •,1ou ca.n m<,;1,ke up your own filename
,o r :;imply call it PRACTICE. TEXT. Remember to ,;.lw.ays include the suffix • TEXT
on your source files to identify them as text files cre~ted by the Editor.

If you leave the Editor after writing to another file, the SYSTEM . I.IRK file is
not •Jpdate-d c:~nd remains as it was before the edit :.ession. If you w.~nt to
also update the SYSTEM.IJRK file, return to the editor, Q)uit again, and choose
the U)pdate option.

To clear or erase the SYSTEM.IJRK file, execute the Fliler <.\nd u:a the N)ew
cummand.

This concludes the practice exerciEes . in section 3. Vou are now ready for a
mor2 detailed study of TI PILOT. In this section you ha.ve studied and
e~perimented wi t.h vari;,.bles,. progr.a.1ns, lc,.bels, ar,d mc,.ny of the instr1Jctions in
Tl PILOT. These are the TI PILOT instructions ·tou h<.\ve studied thu: f.;.r:

T: Type
c: C.ompute
D: Dimension
G: Grc\phics
S! Sound
'J: ,,,~e·:h
M: Mat~h
A: Accept ,. Jump
?: R'="~1.a.rk

SECTION 4: THE FOP.HAT or A T! PILOT IN3TRUCTICtl

This section is an overvi ew of the for~~t of a TI PILOT instruction, includin~
c\.n ·Jve r·Jie,,., of +.he kir1ds af drtta used by the instructions ..

A TI PILOT program consists of a set or series of instructions. All of thoa
ins t:-- 1Jct.ior.s in a pr,J9r ~.m either define cf".tei. or ci;\use an opereo.tion to be
performed.

An instr•Jction in a TI PILOT program consists of a single line of up to 80
characters. An instruction can include six kinds of element~. These element~
a.re

'o' Label
'o' Op-code
!o! Modifiers
'o! Conditioners
!o! Relational expr~ssion
!o! Text-field

Not all of these fields must be present in an instruction. However, when the
fioalds a.re present, they must be in the order listed above.

The label field is option.-..1. It is used when you want to n.,me a specific,
individual instruction in a program. You may use a label alone on a line; in
that case, the label is associated with the following instruction.

The cc,mp1Jter rec,:Jgni:es onl :.,· the first :.ix ch~r ,;4.c+.ers af a. l abel .. Whe-n u<z: eci
in a l~bel field, the l .~.bel begins in cc,lurnn two, preceded by an asterisk in
column one. t.lhen a l~.bel is used in a text field, it is not pr!>ceded by an
"sterisk. The first of these character,; w,ust be a l!>tter; the other
i:har~.cters may be let+.ers or numbers. There c~n be up to twenty-five labei5
in a TI PILOT progra.m.

If a label is followed by an op-code on the same line, there must be at least
one ·5pc0.ce between the last char.act.er of the label and the fir·st char~.c"ter of
the op-code. There must not be any spaces between the asteri<sk and any of the
characters in the label. The char~.cters ,:,f -3 l;,bel constitute a n.,me ,ahich i'=
~.ssociated with the instruction (or set of instructions> folloLJing it.

You c.;.n choo:e any name you w~.nt for a la.t.,o:l. '(our programs a.re ec\::ier ta
underst.;.nd, however, if you choose name~. which reflect the purpose of the
program segment be~inning at the lio.bel. Becct•Jse the comp1Jter Ceiesn' •.
recognize anything past t .he : .i:cth char~cter in a label, you can use lhe f::p ,1ce

th-?reafter to document ·rour progr.am as you wo1Jld with the R~mark in-s:+.ructior.

Pe~e 34

For example, the label

'INTRO

mi'.Y be used for the introductory ~egmen+_ of d program, .. ,nd 1:.hE· label

*ANAL'(S

may be used for the progrc'.m ;;ectibn which perfonns an .=':.n.:i.l ysis of t;?st : .cores ..

Here are same examples of correct and incorrect L,bels as used in the
label-field. Assume that the asterisk pr~ceding ~ach label begins in the
first column of a line.

•GOOD
*EIGHTY
*A73
*A73MS
INTRO
*INTRODUCTION

* INTRO
*IN TRO
*4PLUS2

*FOURt2

Correct.
Correct.
Correct.
Correct.
Incorrect; na ast~risk in front of the name.
Correct <computer only recognizes first six
characters).
Incorrect; a space between the asterisk and the l~bel.
Incorrect; a space within the label.
Incorrect; first chc:<.r:lcter after the eo.sterisk is not a
letter.
Incorrect; the plus sign is not a letter or a number.

Note: When used in the text-field of an instruction, a label is not preceded
by an asterisk. For example, in the instruction

J: GOOD

J: is the op-code far the Jump instruction and GODO is the label to which the
Jump transfers control.

P~.se 35

4.2 Opera.lion Codes cop-codes)

The op~ra~ion code identifies the kind of instruction. The oper~tion code
(o p-code) must appear first in an instruction unless the instruction con la.ins
a l.;bel. In that cas e, it f ollaus the lc,bel. There must be a t least one
:pc.ce bett.J •?en the la:5 t ch~ rJ.cter of the label and the firs t char~c t e-r ,Jf tJ·,e
o pt?ra tion code.

The TI PILOT opera t i on codes are discussed in section S.

An operation code specifies the action an instruction is to perform . Three
i terns can be appended to an operation code to alter its; perform?.nce. These
are a modifier, a conditioner, and a relational expression.

An op-code (plus any modifiers, conditioners, or relational expressions) is
folloue d immediately by a colon<:>.

For example, T: is the op-cede for a type instruction ;

4.3 Modifiers

A modifier is a single letter appended to an op-code ~hich changes the way in
which an instructi,Jn i5 performed. If used, a modifier follows the last
letter of the op-code (before the colon).

For ex ample, T: is the op-code for the Type instruction and in the instruction

TH: THAT'S RIGHT.

Hi; a mod i fier.

A modifier (if u s edi must come before .sny conditioner (if used).

Here is a list of the modifiers.

Modifier
Code

H

x

J

s

Modification

Used with the Type operation code <TH: l, suppressi!S the
carriage return and lin~ feed after a message is displayed.
Used with the Accept operation code <AX: l, suppresses the
~.utomatic editing of a. student response.
Used with the M.;tch operation code <MJ:>, causes an
automGtic jump with a correct match.
Used with the Match ope<"ation code (MS:>, permit:. simple
spelling errors.

Even though ~pecific modifi2rs inal-:e s e-nse onl ·.f with cert~.iA op-codes, they can
be combini?d •.Jith .:\ny ,Jp-code. A 1nodifier is ignored if it is n,:,t '!'.PPli,:i-.ble
tu the up-:ode.

P.;_ge 36

4.4 Conditioners

A conditioner is a single character attach~d to ar, op-code Car modifier, if
presenti which determines whether or not the ins true tian is perf armed,
depending upon the truth of the condition(:;).

For exair,ple, T: is (he op-code for the TiP" ir,struction and in the instruction

TI-IV: THAT'S RIGHT.

Y is a conditioner. It causes the Type instruction to be Performed only if the
V (Yes) conditioner is set.
Here is a list of the conditioners

Condition
Code

v

N

c

Meaning

Perform the
set.
Perform the
set.
Perform the

instruction

instruction

instruction
expression was true.

if the v ('/es> conditioner is

if the N (No) conditioner is

if the last relational

E Perform the ins true tion if the E <Error) conditioner

n
is true.
Digit conditioner; perform the instruction if the
value of n is the same as the value in the Answer
Counter Ci:A). The Answer Counter is describEd in
:;ections 4.8 and 5.9.9.

Any conditioner must immediately follow a modifier, if present. Conditioners
themselves m,.y be used in any order. Any condi tianer can be used with any
op-code.

4.5 Relational Expressions

A relational expression is •n expression enclosed in parentheses which either
causes the instruction to be performed if the relational condition is true or
causes the instruction to be skipped if the relational condition is false. A
relational- expression must fallow any conditioners, if present.

The opening parenthesis of a relational expre,;sion .-,ust be adjacent to the
op-code or the last modifier or conditioner, as the case may be. The
expression wi thi _n the par<:ntheses may contain spaces.

Page 37

For e:,.:c\mple, J: is the op-code for a Jump in·:::;truc•.ion 3.nd the inst:--uction

J ([lf2=8): E:1..ERl:'

is performed if ~he relation~l e xpression Gt2=8 is true. The J: in~truction
is not_ performed if the rel;o.tional expression is f-:o.l:;e.

4.6 Text-Field

The te,:t-field is re·1uired for certain instr•Jctions. The text-field is a
group of characters to be used in an instruction's performance. The contents
of the test-field depend on the operation of the instruction. The text-field
must follow the operation code and any modifier, conditioner, or relationa.l
espression, if present. There can be spaces before the text-field and within
the text-field.

4.7 Data Types

TI PILOT uses two kinds of data: numeric data and string data. Numeric data
con~ist uf numeric values. String data consist of printable characters.
l·Ji thin the computer, these two c.;. tegories of da. ta are represented
differently. Numeric data are represented in a form for comput,tion. String
data are represented in a form for displayir~.

4.7 .1 t.'•Jmeric Data Types

There a.re four types of numeric data: cons tan ts, variables, arrays, and
functions.

4.7.1.1 Numeric Canstl:\nts

Numeric constants, as the n,;<.me implies, are numeric values which do not
chc..nge. For example, 5, 173.89, and 3/15 - 2 are all numeric constant-;.

t~umeric constants ,:z..n be written in either~. decitrial format or~- flo~ting
point format.

A ,focim~l format is a list of decimal digits (0 through 9) and may include a
decimal point a.nd may be preceded by a plus (r) or minus (-) sign. For
ex~mple, 8193 is a decimal format numeric constant. So is 81.93, -8.193, and
tB19.3.

A floating paint format is a decimal number followed by the letter E, , si~n
< ~ or -) , and a one- or two-digit integer. The decimio.l number precedi:-19 t~i2

letter E is a mantissa. The integer value following the letter E is an
exponent. A negative >?x:ponent i5 prec~ded by a minus sign (-). A po=ii:ive
e:t.ponent may be pr'?C~ded by a- pltJS 5ign (r) ar +.he plus sign may be omitted.
The exponent is the po ... er of 10 "'hich is multiplied by the inanti ·a;sa to
determine the value of the number. For ex,,mple, S4E2 is a floating point

2
numeric constant e'lual t.o .54 times 10 or 54 +_:;Th?S 10 time£ 10 'Jr .S;.100.

P,).ge 38

He-re Ii.re some other exe\mples of floating point numeric cunst~lnts.

-89E3 (equals -89000)
8.9E3 (equ .. ls 8900i
S9E-3 (equals 0.009)
8.9E-3 (equals 0.0089)
-R9E-3 (equals -0.089)
-8.?E-3 (e-1uals -0.0089)

4.7.1.2 Numeric Variables

Numeric variables are nan.es given to numeric values. As as the name
"v .. riable" implies, these values can be changed by your program.

A numeric vari .. ble is designated by a single upper-case letter or an
upper-case letter folk,wed by a single di9it. For example, N, X, Nl, and X9
are all valid numeric variables. The following are not valid numeric
variables: t (not an upper-case lett;,r), T90 (more than one digit following
t~,e letter>, 9T (the first character is not a letter).

7 .1.3 Numeric Arrays

A numeric array is a set of values organized into a matrix l.,ith defined
di~E-nsions. An a.rr-ay is given d name and is defined by a Dimension
instruction <see section 5.10 for a description of the Dimension
instruction). For e~ample, the Dimension instruction

D: B6<2,3>

defines an array named B6 with 2 rows and 3 columns.

The name of an array can be a sing le upper-case letter or an upper-case letter
f~lloc,ed by a single digit (the same as a numeric variable name).

The name of the array is followed by a subscript consisting of either one or
two numbers enclosed within parentheses. When the ,ubscript has two numbers,
the numbers are separated by a. comma..

An array in TI PILOT can have one or two dimensions. The first number inside
the p<'.rentheses is the nu,r,ber of rows. The second number (if present) is the
number of columns.

The following are examples of numeric array designators.

N(2,3)
Z8<9l

The ~11allest pennissible subscript number is zero and the largest is c55.

The 2 by 3 array looks like this.

> >
let

value
2nd

ve lue
3rd

value
>------~; -------~· ----------~;-

4th -Slh 6th
value value value >

> ----- > _______ '> ___ .2

'i'ou ca.n assign numbers to the elements of an array by means of a Compute
instruction (see se~tion 5.9 for a description of the Compute instruction >.

For example,

c: 86(2,3) 17

sets the element in the 2nd row and 3rd column to the va.lue, 17.

> ? > ? > ?
> ______ ... _____ .> -----~~

? > 17
L _____ ?;: ____ ;;, ___ ,,

Then, the two statements

c: 86'1 , 2) -8
C: B6< 2,1> 50

c a.us e the array to look like this.

'· ,
? -8 ?

~--- > _____ .· --- .··

50 > ? > 17
>----- •' ----- -· ---- .. ·

A one-dimensional a rr·ay has only one row, but c ,;_n have more than one cclumn.

4.7.1.4 Numeric Functions

A numeric function ~.ut.ama.tic5.lly perfarms a numerical c~.lculation ,:Jn a numer·ic
v.a l1.Je. The f•Jnction i:: -;pe,:ified by .a. key word and the numeric value en which
t he c=<.lc1Jlation is ?o?rformed i3 er.closed in p~.rer,thes~s follawir.g ~he key ,,..; urd.

C: X = ABSCZ)

CJ.lculates the absolute value of the numeric va.ri";ble ._ a.nd assigns that value
to the numaric varia.ble X.

Section 8 describes the nu~eric functions availa.ble with TI PILOT.

4.7 .2 String o.,ta. T·1pes

A string consists of one or more printable characters. There are four t ; ?~S
of string do.ta.: consto.nts, variables, pseudo-variables, and string functions.

7.2.1 String Constants

A stcing constant is a string value which does not change. It inust be
enclosed in qu,Jtation marks, except in the text-field of a Type or Match
instruction. For example, ,.XYZ" and "FETCH, SPOT! 1' are string constants.

A string ccn:stant can be usccd to assign a value to " string variable or it_ c«n
be used in a string expression.

When a string constant is used in a Compute instruction, a pair of quot«tion
marks indicates the bc,ginning and end of thE string itself. For example,

C: Z$ = "VWXVZ"

a.ssigns the string value VWXYZ to the string •1ariable Z$.

4.7.2.2 String Variables

A string variable is a name given to a string, the value of which can change.
A ·string variable is designated by a single upper-case letter Cor a latt;ar ""d
a single digit> followed by a dollar sign ($). For ex;smple, N$, X$, N1$, ,;.nd
X9$ are a.11 valid string vari,;.bles. The following are not valid string
variables:

T
t$
T90$
9T$

(no dollar sign)
< not .in upper case character l
(more than one digit following the letter)
(the first character is not a lcctterl

A string ·,,;.riable can be assigned a value by a Compute instruction. Far
e x,;.11,ple, the instruction below assigns the word TURTLE to the string variable
A$.

C: A$= "TURTLE"

A ::tring vc:o.riabl,e cannot be used in a Comi:-•Jt.e instruction until ·:p ::\c:e has be~n
&llocated for it by the Dime nsion CO:> instruction (5ee ;ection 5.10 for a
de;cription of the Diffiension instruction) . The Dimension instruction
est~blishes the ma ximum length for the 5tring variable. !t5 len3th can be
from 1 through 999 char r.\cter5. For e:-.:.'.:\.mPle, the instruction

O: X1$(80)

dEfines a string •;ariabl~ n.amEd X1$ with a maximum length of 80.

The char,;cters in a string are stored from left to right. If the :nax i mum
string length established by the Dimension instruction is not large enough to
contain the ch.aractErs assigned to the string variable, characters are

"truncated (deleted·) on the right. For example, the Dimension instruction

o: !$(10)

,;ssigns the string variable Z$ a maximu,r, length of 10 charactErs, ,-.r,d the
instruction

C: R$ = "PORSTIJVWX'.'Z"

causes the ten characters PQRSTIJVWXY to be storEd in R$. The Z is truncated.

At this point, the current length of R$ is equal to the maximum length (10).

The length of a string is changed whenever a different number of chara.cters is
stored in it. The instruction

C: R$ = "JKL"

causes the char.,.cters JKL to be stored in RS. The current length of RS is 3.

4.7.2.3 String P~eudo-Varia bles

A spe,:ial ca.se of a string varii'.ble is a pse,1Jdo-v~.riable, which identifie~ a
portion ar subset of a string. To define a pseudo-variable, use the for11

A$(x,y)

where x gives the position of the character in the string which begins the
pseudo-variable and y gives the number of characters.

Far exc.mple,

At<4,2l

cefers to the 4th and Eth ch,,ra.cters in the A$ string variable. If A$ =
"TURTLE", then ASC4,2) refers to the string consisting of the characters T and
L.

A pseudo-variable can be usr,d in " Cmnpu te instruction. For exa.mple,

C: Z$ = "DOG 8. PIG"
C: Z$(7,31 = "CAT"

,-.,sults in Z!, = DOG & CAT. (The characters C, A, and T repl«ce the characters
P, I, and G.I

If a second number is not specified in the subscript, a default value of 1 is
used. The first character in a string is numbered 1. For example,

C: Z$ = 111v'WXVZ"
C: G8$ = Z$<2,3)

ass igns the characters WXV to string variable G86. Then, the instruction

C: F$ = G8$<2l

,,ssigns the character X to the string variable F$.

The ·aalue assigned to the st.ring variable is truncated on the eight if
necessary. For example, the Dimension instruction

D: D$(15)

,assigns a 11a>i11um length of 15 to the string variable X6. Then the instruction

C: X$ = "HORSES ANO cows·

assigns HORSES ANO COWS to X$.

The instruction

C: X$(12,61 = "CATTLE"

results in X$ = HORSES AHO CATT.

The value assigned to a st.ring variable :oay be padded on the right with space:
if necessary. For example, with X$ = HORSES ANO COWS

C: XS<l,61 = "PIGS"

results in XS PIGS ANO COWS (3 spaces bet.ween PIGS and AND).

The length of a string variable does r.ot change as the result of using a
p:e1Jcto-varii\ble.

The number in a subscript can be specified as a numeric constant or .; nun.eric
·,ari.sble. For example,

C: N = 7
C: Z$ "RIKKI-TI:(t:I-TAVP
C: G$ = Z$(N,Sl

c.:signs the char,.cters TIK::r to the string v.;.ri,.ble G$

?a;,e 43

4.7.2.4 String FunctiarlS

A string function performs an operation on a string automaticall·1. The
function is :pecified by a key word, and the ne\me of the :;tring an ,..,hich the
operation is performed is enclos ed in P'='.renthe':2s ,:1ft12r +.~e key word.

For '::!x.: .. nple, the instruction

C: Z$: CHR<13l

-:'.utomatically .a.ssi:3ns the character code for a carri.c'.ge return char:1.cter t,J
the string variable zt.

Section 8.3 describes the string functions available with TI PILOT.

4.9 System Variables

There are two s ·ts+_em variables which a.re used for ;pecia.l purposes in a TI
PILOT progra.m: the '.':A variable .and the :-:s va.riable. The contents of these t.,o
variables are au toma. tic ally up,jated by TI PILOT and can be a.ccess;ed by
appropriate instructions.

4.8.1 Answer Counter ('.:A)

The ;~A (An ·; \.Jer Count.er) syst.:m . ..,<:1rictble is a .r.u1r~.ric ·,ari?,ble th,3.t contains
the current value af the Answer Counter. The ZA value can be 1Jsed ta Cc'.u~e :\n
instruction to be performed .after a given number of student responses.

The value is set to 1 the first time a specific Accept instruction is
performed (s~e section 5.5 for ~ description of the Accept instr1Jction). The
·.,ialue is c1.utoma.+_icd.lly incremented by one each time th,= ;;..me A,:cept
instruction is performed wi thaut an inte,r•.,.ening Acc0pt instr1Jction. The ::A
value i: the v2,lue automatically tested by the Digit condihoner.

A ComPUte instruction can include the system v-:1.riable 7!A. For e~eo.mpl2,

C: N = ZA t 2

a5signs the ·,alue 7 to N if the value in :::A is currently S.

4.8.2 Answer Buffer <::Bl

The i!S (Answer Suffer) system ·,aric\ble is a .s.ir.i.ng vari~ble that contain~ t:he
characters lc0.st o:ntered by the student_. A student_' s r'=sponse can be ~<3.ved by
assigning %8 to the contents of a ;tring varic1.ble in the progrct1r,.

A Compute iMtruct.ion can include the system vari~.ble ;:e. For exc.mpl;;,

C: 5$: ;:B<l0,3)

a~signs to :=trir,g .,,.;.riable S$ the tenth, 2leventh, ~nd ·f.welfth characters in
the Answer Buffer.

SECTION S: TI PILOT rnsrnucnm,s

TI PILOT is base-d an 16 instructions. E.::o.ch in~truction h1.\S .;n operation ::~de
or •up-code 11 which identifies the instruction 6.n,j is a ":iickn<..,m~ 11 for the
ir1struction. Each of the instruction op-codes consists of one or two letters
followed by a colon<:>.

The TI PILOT instructions are listed in the follo«ing table ir, the order in
\~hie~ the instructions are introduced in thi5 :.ection.

Name

Problem

Remark

Type

Accept

Match

Jump

Use

End

Compute

D1men:ion

Eeecute Indirect

Operation
Cude

PR:

R:

T:

A:

11:

J:

u:

E:

c:

D:

XI:

Meaning

Marks the ·;tart of a
problem group and ;ets
options.

Adds comments about the
program from the author.

Displ~ys te1t to a
;tudent.

Receives a ~tudent 1 s
reply.

Compares a student's·
reply to an expected
reply.

Transfers program
control to another
segment of the program.

Calls a subroutine to
perform an operation.

Terminates a program
or subroutine.

As;ign; a value to a
variable.

Defines a numeric array
or string variable.

Performs an instruction
contained in a string.

Page 45

Section

S.1

5.2

5.3

S.4

s.s

S.6

5.7

S.B

S.9

S.10

s.11

Operation
Cc,d e

Me~ning Se-cticn

Fil<? Output FD: Wr-i tes a record to a S .12
diskette.

Fi le Inp•Jt Re~ds ~ record from a 5.13
diskette.

Graphics G: Displays non-text images 5.14
to a student.

Sound s: Sends sound to a student. 5.15

v: Sends speech to a student. 5.16

Workspace w: Gives current status of the 5.17
numeric ,1nd charactier buffers.

ihe Gr .~phic: Sound, and Speech instructions of TI PILOT ar-e especially
;ignific~nt nhancements to thQ PILOT lang1Jc.9e. These instructiDns offer ,-c,u
the opportun ty to use the TI Home Computer' ·s advanced graphics, s,,und, and
speech features to increase the -?ff9c+_i•1eness of a pragra.m.

NOTE: In Section 5 the discussion of e.;.ch TI PILOT instruct.ion be·Jins with a
line that shows its gen~ral form21.t. Certain no+.a.+.ion~l conv2ntions h~.ve t,o?en
used in the For.n.at lines and the text refering to the format.

Brackets indicate optional ite1ns. 'i'ou may use the items if you 1o1ish,
but they are not required.

An ellipsis indicates that the preceding item may be repeated as many
times as you desire.

i!_;,.li~.a Italici:c>d •aords indicate the kind of item or items to be •Jsed.
Enter your own choice in place of the italicized words when 1ilU enter
the instruction.

5.1 Problem--PR:

Format

The Problem instru,:tion marks the beginning of a program segment or the
be~inning ,::,f a new problem group. The PR: instruction h?.s no modifiers,
,:onditioners,. oJr rel=t.tional cwndit.ioners. Hat,Jever, it can hav~ one or more
opti0n cudes.

5.1.1 Options

The following option codes can be used l,Ji i:.h the Prablc-m in:.truction:

Option
Code

u

L

s

G

E

B

Action

Internally converts all the alphabetic characters entered
by the student to upper-case characters. Answers appear
on the screen exactly as typed. <If the U option is not
used, the characters consist of upper- C\nd lower-c.1se
ch.-.racters as entered. l
Internally converts all the alphabetic characters entered
by the student to lower-case characters. Answers appe.-.r
on the screen exactly as typed. <If the L option is not
used, the characters consist of upper- and lower-case
char.-.cters as entered.)
Internally removes all sr«ces from the student's reply.
This sometimes makes it easier to look for an expected
phr~.se in a student's answer. Ans1,Jers appe,:,.r on the
screen exactly as typed. (If the S option is not used,
multiple spaces in the student's reply are a•Jtomaticslly
compressed into one space. L~~ding and trailing spaces
a.re always removed.)
Allows the student to use the GOTO command during the
program. (See section 6 for a description of the GOTO
command.)
Allows the student to use an Esc.spe command in the
program. (See section 6 for a description of the E~.::ape
command. l
Discards the current label table. This lets you use
duplicate labels. You can use the s«me label names once
more after this point or until another PR: instruction
with a W option is encountered.
Discards the current variables, both string and numeric.
This allows you to reuse the variable space.

When a PR: instruction which has no options is performed, the options
specified by the 1110st previous PR: instruction are still in effect. If you
want to change options, write a ne•~ PR: instruction to ch~.nge one or more of
the options. If an option is changed, howe'ler, then a.ll other optic;ns must be
specified again for them to remain in effect.

Options may be a;peci fied in any order with or wi th,:iu t spaces. If both the U
and L options aN! specified (in either order), .-.ll the alphabetic chancte:rs
entered by the student are converted to upper-case.

P:\3e 47

.5.1.2 E:-: amrles

The instruction

PR:

defines the beginning of a new program segment. No options are spe~ified. If
a previous PR: instruction had been issued with options, those options ~ould
remain in effect.

The inst rue tion

PR: IJ

causes all the a.lpha.betic characta,rs enter•?d by the student to be cc,nverled to
upper-case characters.

The instruction

PR: LGS

causes a.11 the alphabetic charaL ters entered by the student to be converted to
lcwe-r-c.?:=e char~.ct:.ers < the L option). Furthermore, the student is allowed to
use the GOTO command during the program (the G command) and all ;paces are
remo•,ed from the stude-nt's reply (the S option).

S.2 Remark--R:

Format

The Remark instruction lets YtJIJ include comments within a program. T~
comments are not see!'l b't· +.tie 5tud::-nt. You can use it to dccument the pr,:'gr.:\m
by e)'.plaining the logic of the progra.m to someone who m~y bi: ~tud ·; ing t t:.. '-'r:·u
can also use the Rem.3.rk in~truction to :;,2pa.r-?.te segments of your program with
blank lines to improve it: rea.dabi li ty.

With TI PILOT there is a "tr.•.iling remark" ca.pability (sa,e al.terc: te f,:;rm.:.t
abo11e). If c?. colon is encountered a sel'.:ond time in a line, the text after it
i: con:idered a remc1.rk. Tr-='.iling !"'emarks cct.n be tJsed with most TI PILOT
instructions.

Ho«e•,er, not all of the instructions in TI PILOT can have a tr«iling rem~.rk
used with them. Trailing remarks cannot be used with the Accept instr1Jction.
If a t_r~iling remark is used with a. Type instruction, it win be displc.yed
bec.;use all characters ir1 tt-,e te:'<t-field are displayed. If a tr-:'1.iling rema.ri~
is used with a Graphics or Sound instruction, the !:.:•mmi:..D.d.=!i.::;.± must not 2nd
1.1i th a s,~micalon.

Pefflark instr1Jctions }.re ignort?d by the computer .;nd, therefore, t-:c<.'·/f? no i.iT1P~.ct
·jr, the ,:iper.;ti,jn of .1 r-,rogr.im. Hm,.,e,,er, r~me.rk ·;: do ucc:Jpi· s+.ar.:~g(: ;p~c·:? :., ... ,
diskette.

Pc-.s e 43

The instruction

R: CALCULATE THE PERCENTAGE OF CORRECT ANSWERS

is a comment on the ,.ourpase of a progr~.m, s-3gment.

As another example, the R instruction can be used to improve the rea.dabili ty
of a program.

R:
R: CALCULATE THE PERCENTAGE OF CORRECT AtlSWERS
R:

C: P = CC1/T1l * 100
R:

A trailing remark is illustrated in the example below.

C: A= 5 Value is assign~d ~a a numeric variable.

5.3 Type-T:

Format

T: 1::.1::!ie.l.d

":h~ Type i;,structian c.;,us2s the !.~1.i.:.fi::.:ld. t.o be displayed on the dis?lay
screen. If a iex±.::iii::ld is not specified, a blank line is printed.

There are a number of types of data that can be specified in the i~u::i~l.,;I.

5.3.1 Text-Field Types

The text-field consists of numeric constants, numeric variables, ~t!"'ing
constants, string variables, and spaces.

5.3.1.1 Numeric Constants

When a numeric constant ~ppears in the text-field, it is displayed on the
screen.

Fur e ;.; c~mple, the instruction

T: 5.9

c.;0.uses the numeric constant, 5.8, to .. ;ppear un the di.;iila'i·

5.3.1.2 Nl'meric V.ariables

1.Jhen a numeric vciriable appe,3.rs in the text-fie.Id, its value is displayed. To
bl? disPL.·wed, the numeric ·,1eo.riable in'JSt be preceded by ;._ number '=ign (t) .. 1.nd
mus-t be followed by .;:.t_ le?.5t one sp~ce. The numeric •, ari.:i.ble 2-.l;o m1Jst have
Ce-?n previously defined in a Compute or Dirnen=-ion instruction.. <See section
5.9 for a deecription of the Compute instruction end section S.10 for a
de~cription of the Dimension instruction.) If a n1Jmeric va.riC\ble in a
text-field has not been previously defined or if the variable is not followed
by at le"'st one sp.ace, the v.ariable's value is not displayed.

For example, the Compute instruction

"' c: Z = 1234.5

.assigns the value 1234.5 to the numeric variable z. Following this
assignmert, the instruction

T: tZ

causes 123~.S to be di~Plctyed.

If Z had not been def_ined by a Compute instruction or a Dimension instruction,
then the instructi~n

T: tZ

would cau~e the characters tZ to be displ,:i.•ted.

A numeric vc:1.riable mu-=.t be followed by at least one ;pace, whi.:h i::;. not
di;pL.wed. If at le,st one sp.aci? does not follow the variable, the value of
the variable is not displayed. If the numeric variable is the last element in
the text-field, however, it is not necessary to follow it with a space.

The numeric vc\lue in the text-field cannot be an a.rr.ay element unles; lOIJ

first assign the arra)'· element ·.,ta.lue to a numeric variable. For e>:1..1.mp!e~ the
instructions

C: X = R(3l

T: tX

assign lhe value in element 3 of arr·ay R to the numeric ·-·.ariable " a.nd dieplay
the value ..

P;;.ge SO

.S.3.1.J String Cur,stant:;

When a ;tri~g constant appears i~ the te ~t-fi2ld, it is displ~yed. For
'=.'\ .2o.mple, t~,e instr•Jction

T: lHE ANSWER IS "WASHINGTON."

causes the following display:

THE ANSWER IS "WASHINGTON.•

S.3.1.4 String Variables

To display its contents, a string variable must be preceded in the text-fielJ
by a dollar sign ($) a.nd must be f ,Jllm,ed by a.t least one space. The vari a ble
iils.o must have been previously defined by d Compute or Dimension in~tr·uction .
'. Se e secticn S.? for a description of the Compute instruction and s e.:tion S.10
for~ description of the Dimension instruction.) If a string variable in the
text-field has not been pre'liously defined or if the v.;.riable is r.ot followed
by J.t lea~.t one space, th~ variable 1 :, Vi'.lue is r,ut displayed.

Fo r e xample, ~fter first reserving SP C\Ce- with ct. D: instr1Jction

D: M$(6)

the instruc lion

C: M$ = "BEl',GLE"

.assigns the characters BEF,GLE to the string variable M$.

Then, the instruction

T: ONE KIND OF LONG-EARED DOG IS A M •

causes the following to be displ,,yed:

ONE KIND OF LONG-EARED DOG IS A BEAGLE.

Notice that in the previous example the sp..ce following the string variable
was not di3Played. If you want a space to be displciyed, p•Jt two spaces
following the string variable.

The instruction

T: ONE KIND OF LONG-EARED DOG I S A 11.

G .uses the follc.wing to be aisplayed:

ONE !GtlD OF LDNG-E:'.<RED DOG IS A M.

be•: C\use there i!: not a space following the ~t.r1ng vari2.bl ·:?.

If M$ h~.s not been prf?v iously definedr ~.he inst.ruction

T: A M IS CLASSIFIED AS A HOUND.

would cause the follmiing to be displa~·ed.

A M IS CLASSIFIED AS A HOUND.

S.3.2 Modifiers

The H modifier can be used with a Type instruction to suppress the carriage
return and line feed which usually follow automatically after the te,t-field
is displayed.

r'br example, the two instructions

T: HOW NOW,
T: BROWN COW?

cause the following two lines of text to be displayed.

HOW NOW,
BROWN COW?

But the instructions

TH: HOW NOW,
T: BROWN COW?

(a space follows the comma)

cause Ue following line to be displ.;yed.

HOW NOIJ, B ROWli COW?

5.J.3 Conditioners

An·y- of the conditioners can be specified with the Type instruction. (See
·s?i:tion 3 for a di:;cus:;ion at the inst.ruction conditioners.)

For example, the instruction,

TN: THAT'S NOT QUITE RIGHT.

causes the text-field to be dis;,!ayed if the match condition is not true.
{See s.e,:tion S.E far a discus:5ion -:Jf i:.he Mat_,=h instruction.)

5.J.~ Rel~tional Conditioners

Rel.stional conditioners can also be specified for " Type instruction.

For example, the instruction

T(X=8>: NOW, LET'S TR'f SOliETHmG DIFFER8~T.

causes the text-field to be displayed if the numeric variable Xis equal to
8. Otherwise, the t,?xt.-field is not displ,.yed.

As another exaniple, the two instructions

TCX=Sl: NOW LET'S TRY SOMETHING DIFFERENT.
TC: A BILLY GOAT EATS GRASS.

cause th" text-fields to be displayed only if the numeric variable X is equ~.l
to 8. Since the C car.di tior,.ar refers to the l.ast relation~.l condi tior..er, th"
text, A BILLY GOAT EATS GRASS is displayed only if Xis equal to 8.

5.3.S Continuation of the Type Instruction

If you want to display several lines of text, you c"n use several THe
instructions together. You need onlt include the T: instruction code in the
first Ty·pe instruction. Subsequent type instructions require only tt.e colon
b"fare the text-field. With continuation lines such as these, any modifiers,
conditioners, or relational ·candi tions ~et in the initial T: instruction apFlY
as well to the continuation lines.

For t?XCllDPlc,

TCX=Sl: NOW LET'S TRY SOMETHING DIFFERENT.
: A BILLY GOAT EATS GRASS.

causes the text

NOW LET'S TRY SOMETHING DIFFERENT.
A BILLY GOAT EATS GRASS.

to be displayed if X equals 8. The conditional expression applies to both the
first Type instruction and the continuation line.

5.3.6 Using the Type Instruction for Screen and Cursor Control

The Type instruction is normally used to cause lines of text to be displayed,
but a limited form of screen a.nd curs:or control c.:,,11 be impl,:mented an :3. video
display.

Page 53

These oper~tions and t_heir chnr:3.c"ter codes arJ?:

Operation Cade

82c~ ward Space 8
Forward Space 137
Down~ Line 10
IJp a Line 139
Clear Screen and Home Cursor 12
Carriage R,~turn 13

You can ca1Jse these operations 'to be performed by sending to the display
screen the chari'.Cters which cause these operations. You can as$ign these
c?iaracters to a string variable and then use a Type instruction to send the
charact2rs to the display.

For example, the chi'.racter c,:;de for a carric.ge r·etur:, is 13 and the chdr.!cter
code for a forward space is 9.

The following Compute instructions

C: F$ CHR(9)
C: C$ CHR(13)

£<ssign the forward SP<>.ce character code to the string variable F$ and th@
carriage return character code to the string variable C$.

Then, the Type instruction

TH: A------ IS A LONG-EARED HOUND. C F F

prints the +.e,t A ------ IS A Lot!G-EARED HOUMD. Then, it causes a c .arriage
return back to the aeginning of the line of text. (the lette A> and forward
5Pc:\c:es to +.he first hyphen su the student ,:an fill in the :n ;sins • .. mrd. The ;~
modifier suppres!:..?S the ctu"tGm.atic c.;rri2.9-? return .and lir:1'.: eed c.t the ·=rid ,.:jf
the line.

5.3.7 Examples

o: 5$(1)
o: 8$(1>
C: S$=CHR(32)
C: B$~CHR(3)

The f,Jllowing instructions

TH: THAT IS S 8
TH<C/8 > 2): tJOT S B
T: THE CORRECT AN!c\JER.

c.ause the text line THAT IS TriE CORRECT ANSWER to be displ~.yed •Jnles; the
numeric value- C di •,,lided by 8 is gr·eeo.ter then 2. In thcit c;;.::2, the "text liile
THAT IS NOT THE CORRECT ANSWc:R is .:f i~ P l.a:ted.

As another e x.:\mPle, as~•Jme the string •1.;1rici.ble Nt i ;; equal to the chr. r :o.cter~
608 ana that the nui11eric varictble X is e~uo.l t.o 84.

Tho? inc:trtJction

T: OK, N , ASSUl'iE THAT THE TEMPERATURE IS ;x

.:a.uses OK, BOB, ASSUME THAT THE T[MPERATURE IS 84. to be displayed.

S.4 Accept--A:

Form"t

A:
A: $:a.i:ios=~ciz.b~$
A: tnumeci~~=-cU.hle

The Accept instruction accepts a response from a student. The student's
response is saved in the Answer Ouffer C~B> o.nd cl.!\n be used for sub:equent
ins true tions.

The re=ponse can alsa be assigned to ~ ~±cioa.=:..:.a.ci.:;1bl.; or m..!m~r:i~---.:L~cUb.l:; in
the Accept instruction.

The student's response is edited by Tl PILOT "s follows.

!o! All leading and tr"iling spaces are removed.

~o! All multiple spaces within the response are compres~i=d to a single
space.

!o! If the S option was specified by the last PR: instruction (see
section 5.1 l, all spaces are removed from the student' a response.

'o! If the U option was specified by the last PR: instruction, all
letters are converted to upper case. The U option has no effect on
non-alphabetic characters.

!o! If the L option was specified by the last PR: instruction, all
letters are converted to lower case. The L option has no effect on
non-alph.a.betic characters.

5.4.1 Overriding Automatic Editing

Vou may w.a.nt ta o.ccept a ~tud~nt' s response in the exact fo!"'m in which it w~.s
,:;-ntered. You can do :o with the X (eXact) modifier. The :< :r1cjifier
suppres5cs the L\utoma.tic editing of the :tudent I s re;;pon;;e end ,:>ver-rides an'/
options speci fie-<:l by the last PR: instruction.

Vou c.:.\n ;pc-1;.:ify the eXact modifier with an Accept instructiun liJ.;e thi5!

AX:

Page SS

S.4 .. 2 Stsle:m Vaii~b 1es <:.:B and I.A)

Two system vari.;.bles are au+_oml:".tic:\lly 1Jpd.;f_ed with eJ.ch Accept in;;truction.
One of t_~,ese is the Answer Buffer C!8), and the other is .:tn Ans\.Jer Cuuni:er
''.(A> .

The student 1 s rec.:.ponse is automatically placed in the internal An swer Buff ·c? r
which you can ref e r,:? nce by the syst:!m variable na.me 7.B. The buffer ' s content_ ~
-?.re replaced with each new response and always contains th~ ll:".st student
response. Therefore, if you w~nt to 3ave a student's response for later us~,
;.-ou must use a string varii,ble and/or a numeric variable with the Accept
instruct ion.

The Answer Counter lets y-ou co•Jnt the number of student replies. It c.Junts
the number of times that the same Accept instruction is performed without ,,n
intervening Accept instruction. The first time that a particular Accept
instruction is performed, the Answer Counter is set to one. If the s;me
Accept instruction is performed without an intervening Accept instruction, the
Answer Counter is incremented by one each time it is performed. Then, when .:\
'1ifferent Accept instruction is performed, the Answer Counter is reset t_o one.

't'ou can ci.ccess the number in the Answer Counter and determine how many times a
;.tudent h<;ts res ponded to a question. You cc:1.n use the value of ZA in an
e xr,r e s ;ion or yolJ can set it_ to a spo?cific value. For example, consider this
program segment.

D: R$<10>
C: N=O
T: WHAT IS THE NAt1E OF THE COUNT RV IMMEDIATELY

NORTH OF rnE UNITED STATES?
*REPLY
A: R
C: N = ::A
11: CAtJADA
HJ: MO, R IS NOT CORRECT.
TN1: THIS IS YOUR HI ST. INCORRECT ANSWER.
TN2: THIS IS YOUR tN ND. INCORRECT AtlSWER.
TN3: THIS IS YOUR tN RD. INCORRECT ANSWER.
TN <%A>3>: THIS IS YOUR tN TH. INCORRECT ANSWER.
JN: REPLY
TY: GOOD. R IS NORTH OF THE UNITED STATES.

Pag e S6

T:n? progT21m poses a ~uestion to the student .:,rid anal-,,zes the student's answer.

The instruction, TN: NO, R IS NOT CORRECT. causes a message to be
displayed if the student's answer is wrong. mote that an extra space is
n1ecessari' .;fter SRS for proper spacing of the ,jisplay1ed rntessage. l If the
student enters MEXICO as an a.nswoi:-r~ the foll,Jwing me$s .=1ge i;. di;;:;layed.

NO, MEXICO IS NOT CORRECT.

Furtherir,ore, the instructions which use the ;~A s ·/ stem va.ri~ble in a rel.:,ti·~nal
expres;ion cause a number to be displ.1yed. The instruction, TN<3>: THIS IS
'r' OUR IN RO. INCORRECT ANSWER. caustes a rnessa.ge to be displa~·ed if it is the
student's third wrong answer (the s,,me Accept instruction has been perfortt,ed 3
times). The message di~played is

THIS IS YOUR 3RD. INCORRECT ANSWER.

NOTE: The largest value the Answer Counter can hold is 9.

S.4.3 Using Variables to Accept a Student• s Respcnse.

You can put a 5!..Cl.ll!!='.!=..Ci::.bli: and/or a O!JID:cic:=:.!.a.c.i::.ble in the text-field of
an Accept instruction. The student's response is stored both in the vari~ble
you specify and in lhe Answer Buffer IZB).

When a string variable is placed in the text-fiald, tt,a student's response is
assigned to the string variable. A string variable must be preceded by a
dollar sign($), and the string variable must have been previously defined :n
.:\ Cui11pute er Dimension instruction <see :section 5.9 for a description of the
Cumpute instruction and section 5.10 for a. description of the Dimension
inst.ruction).

As an example, the instruction

A: R

causes the student ' s response to be placed in the string variable RS. RS must
have been previously defined with a Dimension instruction (see section 5.10
for a description of the Dimension instruction).

When a r,umeric variable is specified in the text-field of an Accept
instruction, the first decimal value in U,e student input is pl.aced in the
numeric variable. The numeric variable must have been preceded by a number
sign <tl and must be previously defined in a Campute instruction or a
Dimension in-=:tructior ..

For exalllple, the instruction

A: U

causes the first deci~a.1 value in the student response ta be ?lio.•:W in -~h~
prev1cusly defined numeric vuric.bie I. If the studen"t 1 s repl y is "It i: 18
Teet i\Od 2 inches , 11 the value 18 is pla.c:1 in l.

P~.ge S7

If a numeric variable i: :.p'?ci-fied .:.. nd +.he student ' : response doe: not. include
a number, the Error ,:o'1dition is set. Subsequ~nt instructions can then check
the Error condition to det<=rmine the appropriate action.

For ~x Ztmple, if the student'; reply is "It is -=igh~-~':?n f 1?1?t ~.nd two inc~:i:.?s,"
then +.he Error CC'ndi t ion is :e"t. Here is an etclmple of a :erie: of
instructions.

~ASK T: WHAT 15 2 t S?
A: tI
TE: PLEASE TYPE A NUMBER
JE: ASK

The first instruction na.t.eled ASK) displays the question WHAT IS 2 ~ S?

The sec:ond instruction accepts the student's answer and places the number in
the answer into the numeric variable I.

If the student does not enter a number (for example, if the student enters
SEVEN or simply pressed <return> >, the third instruction displays the messag ,.,, ,
PLEASE T'-IPE A NUMBER.

The fourth iMtruction causes a jump to the first instruction <labeled ASK) if
the student does not enter a number.

The third and fourth instructions both use the Error conditioner (E). The
Error condition must be set to cause these instructions to be performe,j.

If the student enters a number, the third instruction does not display a
message and the fourth instruction does not cause a jump.

Numeric values in a ·5tudent response can be expressed in a variety of ways,
all of i.ihich are correct. For ex~.mple, the value of pi could be exrre,:ed a;
3.14, 3.1416, or 3.14159 ••• , depending upon the degree of precision required.

Vau can permit +_he student ssome flexibility in +_he answer by editing his
respanse.

For example, the instructions

T: WHAT IS THE •JAUJE OF PI?
A: tI
TH<ABS(I-3.14) > 0.01!: rnv AG,HN AND BE f) LITTLE MORE PRECISE.

would print a message if +_he student's answer is not within 0.01 of t~.e
cwrrect value.

'lou can specify both a string variable and a numeric variable in the
text-field of an Accept instruction. The two can be specified in ,;\ny order,
but they must be SEParated b·, .s.t least or.e sp,sce. If bath are specifie.j, all
of the t:di ted student re=pan:e is plc&ced in the string variable and the first
·~ei:im'-11 number in the respan-=e i: pL: ... ced in t:-,e numeri,: v:o.ri.able.

5.4.4 Accept Single

You can u5e the Accept Single modifier (S) to accept only a single character
from a student. With the S modifier, as soon es +.he student pre~:ies a key on
the keyboard, the character is stored in the ~!C Answer 3uff·~r (.:\nd -iffl numeric
variable or string variable specified) and the next instruction is performed.
The cursor remains where it is after the character is entered.

For example, the instructions

T: STUDY THE CHART ON PAGE 68 OF '/OUR WORKBOOK
: AND THEN PRESS ANY KEY TO CONTINUE.

AS:

~ive directions to the student and then wait for the student ta press ~ key
before proceeding. No automatic editing occurs on the response to an AS:.

S.4 .S Ex.implc:s

The following prograro seglll<!nt demonstrates the Accept instruction .s.nd the
Answer Counter.

D: RS<lS)
T: WHO WAS THE FIRST PRESIDENT OF THE UNITED STriTES'>
*REPLY A: R
M: WASHINGTON
1Y: GOOD!
JV: CONT
T1: NO, R IS NOT QUITE RIGHT. TRY AGAIN
T2: NO--OUR NATION'S cr.PITAL IS NAMED AFTER THIS MAN.
T3: HIS NAME IS WASHINGTON.
JC:A < 3l: REPLY
~CONT

The numbers following the Type instructions <T:) are condi tionert.:: which r~fer
to the value in the Answer Counter <::A>. In other words, Tl: is equivalent to
r<;:A=l): in this program segment.

The first instruction ?.sks a question. The second instr•Jction (labele,j REPL.'.'l
accepts the student's ~nswer and automatically saves the an~wer in the system
·,.viable 7.0. The third inst.ruction matches the student's reply with the
correct answer (see section 5.5 for a description of the Match instruction).
If the 1:tudent' s ~.nswer is correct, the fourth instruction causes the message,
GOOD! to be displayed and the fifth instruction causes a jump to the label
CONT.

If the student's first answer is not correct, the sixth instruction is
performed. It informs the student that the response was incorrect. If this
is the student's.first wrong ~nswer, neither the seventh, eighth, or ninth
instruction is performed. The tenth instruction causes a jump back to the
Accept instruction and awaits another answer fro11 the student.

If the student's second answer is not correct, the fourth and fifth
instructions are not performed. The sixth instruction is not performed
because the Answer Counter C:A> is now 2. The seventh instruction is
performed. The eighth and ninth instructions are not performed, The tenth
inst.ruction causes a jump bac!-; to the Acc:ep+_ in:tr1Jctiori.

If the student's third ~ns er is not correct, the si x.+.h and seventh
instructions are not performed because the An'.::.wer Counter <::A) is now 3, n,Jt 2
or 1, In this case, the correct answer is displayed by the eighth
instruction, and the ninth instruction causes a jump to the label CONT.

As .:\neither ex~.mple, consider these in·:;truction'3.

D: fJ$(15)
C: L=O
T: WHAT IS THE NAME OF YOUR BEST FRIEND?
AX: fl
T: o::, SUPPOSE N HAO 85 CENTS

: Ql.JARTER. HOW MUCH WOULD N
*REPLY A: tt.
TE: ENTER A NUMBER, PLEASE.
JE: P.EPLY

AND '(OU BCRROWED A
HAVE LEFT?

P~ge 60

The first instruction is a prompt for the student to enter a n.;me. The ~~c0nd
iri3truction puts the r1.:tme entered bt the student. into the -=tring variable N$.
Th;, third and fourth instructions <-, T:rre instruction i>.nd a Type continue.hon)
pose a question and cause the name entered by the student to be displa.yed as
part of the question. The fifth instr•Jction (labeled PEPL'I) accepts the
student•s answer. If the student does not include a. number in the repl:·, the
sixth instruction d:i.splio.y ; the message ENTER A NUMBER, PLEASE. and the seventh
instruction ,:auses a jump to the instruction labeled REPLY. If the ;t.udent
enters a. number, nothing is displayed (sixth instruction) and no jump occurs
(seventh instruction).

5.5 Ma.tch-M:

Format

The Match instruction lets you anal y ze a student's answer. The ~ti=f.iE.l.,;I is
compared to the student• s ansswer stored in the Answer Buffer ::s. w:-.en a mctch
is found, the V conditioner is set. When a. match is not found, the N
conditioner is set. The state of the conditioner can then be used in
subsequent instructions.

As 3n example, examine the following instructions.

T: A "PAIR" IS TWO OF SOMETHING.
T: NAME A PAIR OF THINGS ON YOUR HEAD.
A:
M: EARS
*OK TV: GOOD.
JV: CONT
11: EYES
JV: OK
T: NO, HOW AOOUT EARS OR EYES? YOU HAVE T\lO OF THOSE.
*CONT

Page 61

The first two instr,Jctions po~i: the qu~stion. The third instruction accepts
the student's answer. The fourth instruction compare~ the student's answer to
or,e of the two e,eected ,nswers, "EAP.S." If there is a match, the'{
conditioner is s<at and the fifth a.nd six th instructions ca.use "COOO. • to be
displayed end program coni:rol ta jump •.o the label CONT. If the student's
answer i3 not 11 E1~RS," ~hen t.he se 1.,enth instr·:.1ction corr.pares the student's
.:1 n·; wer with the ·3econd expected answer, 11 EYES.• If there is a match, the V
conditioner is set and the <aighth instruction causes a jump to the fifth
instruction. If ther<a is not a ma.tch on the second Match instruction, the
ninth instruction displays a message and program control passes to the label
CONT.

Remember to structure the text-field of a Match instr•Jction in accordance ,..i th
any <aditing of the input by the Accept instruction. Recall that the PR:
instruction can specify the U, L, or S options. Orie of the two space-re-moving
options <compress multiple spaces tc a single sp~ce or remov<a a.11 spaces> is
always in effect unless the Accept instruction specifies an <axact match CAX:l.

5.5.1 Match Instr•Jction Special Features

There are several ·5pecial features which c=\n be specified in tt-.e te~t--field Of
a Match instruction which give the student more or less flexibility in
scttisfy ing a required respon5e.

Th~ following special features are available with the Match instruct.ion.

SVMBOL

*

DEFINITION

Joins two or more required words in an answer; di~regards any
characters which a,:cur b•?tween the. re~uired sequence of
cha.r·acters.
Separates the choices whEn there is more than one acc?ptable
a.nswer.
Used before and/or after a required word; causes a match only if
th~re is a space within the response or at the beginning or end
of the response where the ~: ~PPE3.rs.
Matches any single charci.cter • . ..1hich app-e~rs at that same relati -..1e
posi tian in the student's answer.

5. 5.1.1- The & Matching Feature

An ~mpersa.nd (~) in the text-field of a Match instruction allows you to
specify a match with more than one word or character string in the ~tudent 's
='.nswer. For a correct match to occur" e~ch word or chci.rl:\cter string joir.ed
to:Jether by the ,;smpersand in the Match instr1Jction m•Jst be present .:1.nd in the
sio.me order in the ;tudent'; response.

The & disregar·d: any characters that migtlt be p:'es2nt bet i,.•een the 1..Jards. fc:'
e~ am ple, the instruction

M: El1RS1ErES

c s.u,ees the Y condi t,ioner to be set for «n'I answer with the word EARS foll.iweil
by the word EYES. All of the following student responaes cause H,e Y
conditioner to be set.

EARS AND EYES
A PAIR OF EARS AND EYES
BEARS HA~'E EYES

'lOTC: The Match in;truct.ion ignores the characters in the student response
until it finds the first occurrence of the word EARS; therefore, the response
GEHRS HAVE EYES causes the Y conditioner to be set.

The following respon;es do not cause a match because the words are not in the
same order.

EYES AND EARS
POTATOES HAVE EYES, BUT NO EARS

With the & ma tc!lin9 feature, you can speci f'I more than fwo key words.

For example,

:i: THUNDER&LIGHTNING&RAIN

causes A rr~tch for a student response of

WITH THUNDERING RAGE ANO LIGHTIHNG REFLEXES, HE RAINED BLOW AFTER CLOIJ ON
ME.

s.s.1.2 The! Matching Feature

The ! feature lets you check for one of ~everal expected words in ~n answer.
The. expected words 1Dust be separated by an exclamation mark <.! l in the
text-field of the Match instruction. If any one of the words appears in the
student•; answer, the V conditioner is s~t.

Ps.ge 63

For exc:'lmple,

T: NAME A PRESICfi!T WHOSE Lil(EtlESS APPEARS ON THE
: MOUNT P.USHMORE NATiot!r,L MONUMEIIT.
A:
M: LitJCOUJ' JEFFrnsoN ! llOOSE'JEL T ! l·JASHitlGTm

ca.uses the Y condi tier.er +.o be set for any student answer including LINCOLN,
JE."FERSotl, ROOSE'.'ELT, or WASHINGTON.

Nute: It is important that you do not put spaces on either side of the
exclamation mark, since this will cause the excl .?.mation mark to be included a!:.
part. of t.he required resp1Jn~e. It is also import(..;.nt that you do not place an
~clamation mark after the last word, since this will cause any response ta
match.

S.5.1.3 The 7. Matchin3 Feature

When the 7. char~.cter is used immediately preceding a word in the text-field of
a Match instruction, the word(s) in the st•Jdent response must he1.ve a space in
that position or m1Jst be the first characters typed in the student response.

If the 7. character immediately follows a word in the text-field of a Match
instrlJCtion, the student response must have a ;pac~ in that position or ~u;t
be the last characters typed in the student response.

For example,

M: 7.PEN

causes a. succes!:.iul match for the following ;tudent resJ:onses.

PEN
PAPER ANO P8·1CIL
PEIJTHOUSE

~ut would not cause a match for the following responses.

HAPPEN
srrnT
TURPENTINE

As another example,

M: PEN;:

wuuld cause a mute~, for the fc,lluwing inputs:

iHSSHAPEN
PEN PAL
TI,E DOOR WAS OPEN

but does not co.use a match for these re~-Ponses.

SPENT
PENNY
REPENTANT

t,hen ,: is specified both immediately befor,a and after a word, the word must
a.ppear exactly as specified.

For example,

M: 7.PEN7.

causes a. match for the following student respon~es.

A PEN AND PrnCIL CASE
HE LEFT THE PEN GATE OPEN

but does not cause a m~tch for these respon~~s.

IT MAY HAPPEN
SHE SPENT IT ALL

P:,.ge 65

5.5.1.4 Combin<'.tions of I!., ! , and ::

You can use th>?se special editing fe3.+.ures to screen the student answer'=.. For
-?xa.1nple,

M: PLANE::e,::uP::&Sl(V! Alll

causes 4 motch wi t_h the following

A GLIDER IS HEAVIER THAN AIR
AN AIRPLANE GOES UP IN THE BLUE SI(','
A PLAIIE BLEW UP Ill THE SKY
A PLANE BLEW UP IN THE AIR

but not a match with the following

PU\NES FL'I UP IN THE SK'.'
A PLANE LIFTED UPWARD INTO THE SKY
THE PLHNE FLEW UP INTO Tl-IE SUN

As ::1.nother example,

t1: CARGO&PLANE7.

Cc.uses a match with the following,

THE CARGO AIRPLANE WAS TOO HEAVY TO LIFT OFF.

but not a match with the following,

THE AIRPLANE WAS TOO BIG.

or with,

TiiE CRRGO AIRPLAtlES FLE',J TOGETHER.

P.,ge 66

5.5.1.S The* Cption

When an asterisk appears within a Yord in the text-field of a Match
instruction, it is .nc\tched with any singlE chc1.ra.cter entered by the :t.ud~nt in
tJ·,e 5 .: .. me, rel=\tive position within the .2,. ns wer. This technique allo\,,js the
3tudent some fle~ibility for simple spelling or t yping errors. For example,

T: UHAT IS THE STATE CAPITAL OF TEY.F,s-o
A:
M: AUST*N

Yill match with the following inputs

AUSTIN
AUSTEN
AUSTYN
I THINK IT IS SAN AUSTEN BUT IT MAY BE DALLAS

5.5.2 The S Modifier

The as terisk feature provides for e~pected spelling errors in a single
character position. However, you can allow more gener-:1.l spelling errors: with
the S modifier. The S modifier is placed after the Match instruction cc-de
(MS:). The S modifier allows a correct match for common type~ of spelling
errors, such as one wrong character in a ward or two characters inverte<I in a
\,,,jord.

For example,

T: UHAT IS AN ELECTRONIC MACHINE THAT DOES FAST CALCIJLAT0IONS?
A:
MS: COMPUTER

causes a match with the following responses.

COMPUTER
COMPUTIR
COMPUTRE

Page 67

5.5.3 Automatic Jump Option

You can use the a.utomatic jump option with the Match instruction to simplif'I
the coding of a progra.m.

When the jump option IJ) is specified with the M: operation code, it causes an
automatic jump lo the next Match instruction if the :natch fails.

For example, the following program uses the automatic jump feature.

T: WHAT DID CAPTAIN AHAB THROW AT MOBY DICK?
A:
MJ: HARPOON
T: RIGHT.
J: NEXT
MJ: .LANCE
T: YOU MIGHT CALL IT THAT. IT'S A "HARPOON."
J: NEXT
M: SPEAR
w: IT' s A KIND OF SPEAR CALLED A "HARPomi ••
JV: NEXT
W: IT'S CALLED A "HARPOm!."
;,tJE:<T

The first instruction poses a question lo the student and the second
instruction accepts the student's response. The third instruction matches the
response with the correct answer, HARPOON. If the response is correct, the
fourth instruction disepla.ys the mess.;ge RIGHT. and the fifth instruction
c,uses a jump to the label NEXT. If the response is not correct, the third
in;truction causes an automatic jump to the next Match instruction (the si:..:+.h
ins true tion >.

The sixth instruction matches the respcnse i.ith LANCE. If the response is
LANCE, the seventh instruction displays YOU MIGHT CALL IT THAT. IT'S A
"H(:;RPOOH. • and the eighth instr•Jction causes a jump to the l.sbel NEXT. If the
response is not LANCE, the si~th instruction c .:iuses an ,;'\utomati,: j1JmP tG the
next M«tch instruction I the ninth instruction).

Page 68

The ninth instrtJction mrttches the respor.se with SPEAR. If the response is
SPEi4R, the tenth insfruction displa.ys IT'S A KIND OF SPEAR CALLED A "HARPOON. "
, .nd the eleYenth instruction ca.uses a jump to the label NEXT. If the response
is no+. SPEAR, the twelfth instruction disepl,,ys IT'S CALLED A "HARPOOH".

5 .. 5.4 E~amples

The following program segment illustrates the use of several Match instruction
special fedtures.

PR: U
T: IJHO WROTE "TI-IE STAR SPANGLED SANt,ER"?
"REPLY A:
M: FRANC*S::~'52,::t:EV::
TY: THAT'S CORRECT.
JV: CONT
TN: NOT QUITE. TRY AGAIN.
JN: REPLY
*CONT

The first instruction poses the ·~uestion. The s,::cond in·:truction <labeled
REPL'fl accepts the student's reply. The third instruction matches the
·=itudent I s reply ~g.ainst the k.?Y words. The answer m1Jst contain three words
and in the corre,:t order. Thi> first key ward is FRANC•S. No+.ic ·? that t he
a.sterisk allows for a possible spelfing error; far e xample, FRAtlCES inst?a.d of
FRANCIS. The second key ward could be SCOTT, the e,pected answer, ar simply
the initial, S. The third key word must be spelled exactly right.

If the answer is correct, the fourth instrtJction displays the mes: C\se, THAT 1 S
CORRECT, and the fifth instruction causes a jump to the inst~uction labeled
CONT.

If the answer is not correct, the sixth instruction displays the message NOT
GUITE. TRY AGAIN. Then +.he seventh instruction causes a jump to the Acc1ept
instruction ~nd the student is once again prompted far a reply.

Here is .:,. progr2-.m segm-?nt with the aut_o-m.c"."tic j ump f G.;. ture.

PR: U
*COLORS
T: t!AME OME OF THE COLORS IN THE UNITED STATES FLAG.
A:
MJ: RED
T: GOOD. WHAT PART OF THE FLAG IS RED?
J: REDA
MJ: WHITE
T: YES, WHITE IS ONE COLOR. WHAT DOES WHITE REPRESENT?
J: WHITEA
M: BLUE
TY: TilAT'S RIGHT. WHAT PART OF THE FLAG IS BLUE?
JV: BLUEA
T: THE FLAG HAS THREE COLORS: RED, WHITE, AND BLUE.
J: COLORS
•REDA

~t·JHITEA

*BLUEA

In thi5 ex;,mple, if there is not a correct match for RED or WHITE, the MJ:
instruction cau~es an automatic jump ta the next Match instruction.

5.6 Jump--J:

Format

The Jump instruction alters the normal sequential performance of instr•,ctions
and c~uses the ccmputer to transfer program control to the in,tructi,,n
specified by the d~~±io~iQD in the text-field. A Jump instruction may be
c~nditiona.l or unconditional. l,.lhen 1Js2d in 3. program, conditionit.l J1Jtr1P

instructions allow you to m~ke deci=ions of what to do ne xt.

P.;ge 70

5.~.l Destin~tions of a Jump Instruction

The d12stination in the text-field specifie:; the instruction to LJhich a .jump is
ma.de. The destination must be one of the four i te,ms b,abw.

!o! a label

!o! ~A

!o! ~M

'o! QP

5.6.1.1 A Label

The destination can be a label associated with a specific instruction. For
ex~mple, the instruction

J: CONT

causes a jump ta the instruction labeled CONT.

5 • .!..1.2 GA

If the destination-field is QA, a jump is made to the last Accept instruction
which was performed.

Far example, the jump instruction in the following program :E9ment causes a
jump to the l.;.tl Accept instruction when the answer is incorrect.

T: WHAT WAS THE NAME OF COLUMBUS'S FLAGSHIP?
*ANSWER
A:
M: SANTA MARIA
TN: NO, TRY AGAIN.
JN: QA

A JN: ANSWER instruction would accomplish the same thing. Using a label in
the destination, however, requires more 111emory sp.,.ce than G!A (or GM or GP).

Page 71

S.6.1.3 ~H

If the destination is @H, a jump is made ta the ne1t Hatch instruction.

For e:-:aw,ple,, in the following program ·;egment, the inst.ruction JN: ~M C.?.uses a
jump ta the next Hatch instruction when the answer is incorrect.

*SHIPS
T: 1-JHAT 1.JAS Tl-IE tJAME OF COLUMBUS'S FLAGSHIP?
~ANSIJER
A:
H: SANTA MARIA
Jtl: GM
T: GOOD.
J: CONT
M: NINA! PINTA
TY: THAT WAS ONE OF HIS SHIPS, BUT NOT THE FLAGSHIP.
JV: SHIPS
*CONT
PR:

5.6.1.4 QP

If the destina.tian .is @P, a jump is made ta the next Problem instruction. In
the previous example, the instruction J: CONT could just ~.s well haV<? been
J: GP.

S.6.2 Using Conditioners with the Jump Instruction

A Jump instruction can be either candi tiaMl or unconditional. An
unconditional Jump instruction :llwa.ys Cil.uses a transfer of progr.:;.m control
wt"ien it is perfonr,ed. A condi:ioneo.l in~truction,. on 1:he ai:.her hand, m~y or
mi<.Y not cause a transfer of progr,3m control, depending upon the stat~ of the
c ::mditioner specified by the Jump inst.ruction.

~ - ·:Ll :1 iLO T ..,, 1 ~.-, 6 3

The follo~ing conditioners can be u~ed for conditional Jump instructions.

!o' The Yes conditioner (YI

!o! The No conditioner (NI

!o! The Error conditioner <El

!o! The Last Rela.tional cmditioner (Cl

!o! The Digit conditioner (a number)

5.6.2.1 The Yes <Yl and No on Conditioners

The Y conditioner c~.uses a jump if the Y candi ti oner uas set as a result c;f a
previous Match instruction. The N conditioner causes a jump if the N
conditioner was set as a result of a previous Match instruction.

For example, in the fallowing program segment

T: IJHAT WAS THE NAME OF COLUMBUS'S FLAGSHIP?
A:
M: SANTA MARIA
JY: RIGHT
JN: :.IRONG

the J'-'" instruction causes a jump to t.he insstr•Jction labeled RIGHT if the
student 2nters SANTA MARIA and the JN: instruction causes a jump to the
instruction labeled WRONG if the student enters a respons2 ether than SANTA
MARIA. In this example, it is not necessary to- use the N conditioner with the
JN: instruction since the Jump instruction is performed anyway if th2 Y
condition is not set.

S.6.2.2 The Error CE) Conditioner

The Error conditioner causes a transfer of program control if the Error
condition was set as the result of a previous instruction operation.

The Error conditioner is .set when an Accept instruction specifies a numeric
variable and the student does not enter a number.

5.6.2.3 The Last Relational Conditioner (Cl

The Last Relation~.l Condi i:ioner causes a jump if the L;;\~.t PeJ.~.t.iona l C-:ir:cH ':.:on
was set as the result of a previous instruction ~peration.

Page 73

For example, in the following pr·ogr =1.m E: t·gment

TUl < 4): TRY A U~RCiER NUMBER
JC: TDOSML

if the numeric varii'.blc N is l~ss than 4, the Relational Conditioner is set
and the T~pe instr•JCtion iss performed. The C condi+.ioner attached to the Jump
instruction ,:.;uses +.he rel"tion.al condi +.ioner to be checked by TI PILOT.
Since it is set, the Jump instr-uction c:i.uc.:::.elE- a transfer of program control +.o
the label TOOSML.

5.6.2.4 The Digit Conditioner

The digit condi+.ioner causes a jump if the value of the digit attached to the
Jump instruction is equal +_,~ the v~.lue in the Ans,.,er Counter (7.A). The Oigi t
conditioner must be a number from 1 to 9.

The Answer Caun-t:.er i -~ set to 1 ~-Jhene·..,er a ::;pecific A,:cept instr,Jction is
performed the first time. The An~wer CG•Jnter is incremented by 1 each +.ime
that the same Acc::ert instruction is performed without an intervening Accept
in:3truction.

As ~n ex..?.mPle, in th,:? program ';egment

C: N=O
T: WHAT IS THE >tAME OF THE PLANET NEAREST TO OUR SUN?

'IOU MAY HAVE THREE GUESSES, AND THEN STRIKE THREE,
YOU' RE OUT.

A:

\'OU GOT IT THE FIRST TIME.
YOU GOT IT THE SECOt!D TIME.

M: MERCUR'(
TVl: GOOD.
TV2: OK.
rn: NOT
JV: GOOD

BAD. YOU GOT IT THE THIRD TIME.

J3: BAD
C: N='.:A
T: NO, STRU:E tN • TRY AGAIN.
J:@
*BAD
T: NO, STRil<E 3. YOU' RE OIJT. THE PLANET NEAREST

: OUR SUN IS MERCURY.

?age 74

In this example, th-=: Digit conditiur,er with the .Jump inst.ructions (J'/1~, JY2!,
~nd J3!) causes~ jump only if the value af the Digit conditioner i; equal to
th" Answer Counter's value. Notice that the Digit conditioner also is us<ed
with the Type instruction. When an ir.struction has more than ane canditicoer,
all conditions mu:t be true in order for the instruction ta be performed.

S.6.3 Relational ~xpressians

A Jump instruction can have a relational expression. A jump is performed if
the relational expression is true.

For example,

J(X/12 < 5): LESS

causes a jump if the numeric variable X divided b;, 12 is lesa than 5.
Otherwise, a jump is not made.

When an instruction has one or more conditioners and a relational expression,
all the conditions and the expression must be true in order for the
instruction to be performed.

As an example, the instruction

J3CX/12 < 5): LESS

co.uses a jump only if the Answer Counter is 3 and the numeric variable X
divided by 12 is less than 5. Otherwise, a jump is not made.

The following program ;~gment illustrates the use of e:~pr=·:,5ion evaluatiun:

C: N"I)
T: YOU HAVE A BOX WITH 60 DOUGHNUTS IN IT.
T: HOW MANY DOZEN DOUGHNUTS DO YOU HAVE?
A: tN
JE: NONUM
11:· 5
JCN < 5): LESS
JCN > 5): MORE
T: THAT'S RIGHT.
J: ~p
*NONUM
T: ENTER A NUMBER
J: @A

*LESS
T: NO, YCU HAVE MORE TI~AN THAT. TRY AGAIN.
J: @A

"MORE
T: NO, '/OU DON'T HAVE THAT MANY. TRY AGAIN.
J: @A

Page 75

5.7 Use--U:

Format

The Use instruction causes the compc ~er to lrc'.nsfer program control to a
~ubroutine. Like the Jump instruction, the Use instruction alters the norm'-'l
sequential performance of instr•Jctions and c .~.uses progr,:,.m control to transfer
to the instruction specified in the ,:li;;.i.in.a!itin=fi!;l,:l. The Use instruction
c<:0.uses one other event to happen, however. It ,:auses the address < location>
of the instruction following the Use instruction to be "remembered.• The
address of that instruction is saved on a ·;ubroutine stack.

The d~;iinaii~D::ii!;ld of a Use instruction can be '-'nY one of the four
destinrttions which can be 1Jsed by a Jump instruction: .a lc:o..bel, the previous
Accept instruction (8Al, the next Match instruction (@Ml, or the next Problem
instruction (@Pl.

When the subro1Jtine named in the d:.=.:t.io:.±.i,:~o=.f.ield finishes, an End (E':.)
instruction at the end of the ·;;ubroutine causes the .?.ddress which was 5a.ved un
the ·;tack to be "popped" off the stack, ,).nd prcgreo.m control is returned to
that '-'ddr;ess; that is, the address of the instruction following the U:
inst.ruction. It. i& alsa possible for the E: instruction to transfer program
cantrol to a different. instruction. <See section 5.8 for a description of the
End instruction. l

I.Jhen you write a program which includes subroutines, mGk>? 5ur~ th~t program
control does not tra.nsier to a subroutin~ other than through the Use
instruction.

If pro3ram control pas:~s to a subroutine wi thGu t it; being called by a Use
i nstruction, the End instruction at the end of the subroutine will pop an
.address value off o{ the stack even though an address value was not placed on
the stack when the subroutine received control.

Ex .. mples

Consider the following program segment:

T: WHO WAS THE COMMANDER OF THE CONFEDERATE FORCES?
U: COMNDR
*COMNDR
A:
M: LEE
TN: NO, TRY AGAIN.
JN: ~A
T: THAT'S RIGHT.
E:

In this program, The U: instruction calls the subroutine l .. beled *CONNOR. If
H,e student's answer is wrong, the JN: instruction causes a jump to the 1 .. st
Accept instruction. If the student's answer is correct, the E: instruction
returns program control to the instruction following the U: instr•Jction.

When the E: instruction is first executed, the program branches to the label
*COMNDR because that is the next address (instruction locatron) th .. t is popped
off the subroutine stack. When the E: instruction is executed the second
time, the program ends and the computer returns to the p-System prompline.
The second time through the E: instruction is understood to be the end of the
program regardless of any instructions that may follow it.

Pa.ge 77

The following pra'.)r:-.m ;eJmen1:. uses t_he U: instruction to c.;.lcul ... ,te the numtic-r
of months in c>. given numb1:-r of ·.fee\rs.

c: Y O
c: 11 0
C: G O
T: HOW 11ANV \'EA RS OLD ARE '{OU?
A: tY
TE: ENTER A NUMBER.
JE: C!A
U: C:1LC
T: HOW MANY MONTHS ARE THERE IN tV YEARS?
A: tH
TE: ENTER A NUMBER.
JE: C!A
T<M<>G>: NO, TRY AGAIN.
JC: qA
T: THAT'S RIGHT.
J: C!P

*CALC
c: G Y " 12
E:

PR:

5.8 End-E:

Format

The End instruction ends a progr.;.m or a subroutine. If the End instruction is
at the end of a progr,.m, it ends that program. If the End instruction is at
the end of a subroutiroe, it ends that subroutine.

Just as a PR: instruction is normally used to mark the beginning of a progra.11,
the E: instruction is used to 11ark the end of a program. When it is used at
the end of a program, the E: instruction causes a return to the p-System
promptline.

The E: instruction is also used to mark the end of a subroutine within a
program. The subroutine is called with the U: instruction (See s~:tion 5.7).
W~,en used at the end of a subroutine, the E: instruction causes the computer
to exit from the subroutine and return to the instruction immedic,tely
following the U: instruction which called the subroutine.

TI PILOT maintains a subroutine stack. When a subroutine is called (with a U:
i ns truction>, the address of the instruction following the U: instruc tion i s
pu ~hed onto this stack. Then, .when an E: instruction is performed, i t "pop ; 11

an address off the top of the stack (removes the most recent entry) and
transfer:; program control to the instruction at that address. If there ~re no
entries on the stack, the E: instruction terminates the program.

5.8.1 Destination-Field

The optional ~.!.il!JUi;i.n::f.:..el,;l can be used to transfer control t ,J another
place in a prograw,, rather than the instruction fellowing a U: instruction.
This option allows the program to remove entries from the subroutine stack
without returning to the calling location. If an E: instruction with a
destination-field is performed and there are no entries on the subroutine
stack, the instruction ignores the destination-field and _ returns to the
p-Syste11.

The des tination-field can contain an instruction label, an Acc2pt instruction,
a Match instruction, or a Problem instruction. These are the same four
d ,oices available with a Jump instruction. (See section 5.6 for a di scus;;ion
of the Ju111p instruction and these choices.)

~.3.2 Exe\mples

;ne fallcwing instruction

E:

returns the comr,uter to the instruction following tha ,nest recant:,- pe rfarm2d
U: instruction or e xits fro111 the progra111 if there are no entries on the
subroutioe ~tack.

Page 79

The ins true tion

E: GIZARD

causes a j1Jmp to the l a bl?l GIZf:'~Ro and pops the most recently entered Yalue
~~am the ~ubrGui:.ine 3tack.

5.9 Compute--C:

Format

The Compute instruction c1.s ;igns a value to a v.?.riable. The y~ti.ab.l..e on the
left of the equals sign (=) is assigned the va.lue of the ez.e.r:e~.sicn on the
right of the equals sign.

A Comp1Jte instruction may use either :1umeric or ~tring data. (See sei:tion 6
for a description ,Jf t.he t ypes of numeric .,nd string data.>

5.9.1 Numeric Const.ants

A Compute instruction can include numeric ,:onstants. Numeric constants are
•J s.ed to a3sign a v alue to a. numeric vc.ria.ble or numeric array element.

S. 9 .2 Numeric lJ.ar iables

A numeric variable can be assigned a numeric value by the Compute
instruction*. F,Jr ex.:o.mple,

C: N = 8

a ssi2ns the value 8 to the numeric variable N. The instruction

c: t-!5 = 12.7

~.s5i3ns the value 12.7 to the numeric v2\.riable NS. The instruction

c: X = 87(-2

a ssigns the value 0.87 to the numeric ·,ariable X. See section 7 for a
discus5ion of floating point.

*NOTE: Numeric variables mu:a.i be ini ti "" lized with ei lher a Compute or
Dimension instr·11ction. Otherwise, the va.riable name will not be
recogni zed by the computer.

r~.ge so

A numeric array can be used in a Compute instr,Jction. For e:c ,mple,

C: Z<3,B) = S

assigns the Vrtlue S to the element in the third row M,d eighth column of array
Z. As another example,

C: N4 = R<S,2)

assigns the value of array element R<S,2) to the numeric ·~ariable N4.

Before a numeric array can be used in a Compute instruction, space must be
reserved for the a.rray by the Dimension instruction (see section S.10).

5.9.4 Numeric Functions

A numeric function carries out a numerical calculation on a numeric value.
The function is specified by a key ward and the numeric value an whi,:h the
calculation is performed is included in parentheses following the key word.

For e xample, the instruction

C: X·= ABS(Zl

calculates the absolute value of the numeric variable Z and assigns that value
to the numeric variable X.

Section 7 describes the numeric functions av.aiL,ble with TI f'ILOT.

S.9.S String Constants

A string constant ca.n be included in a Compute instruction, which is us;;,j to
assign a value to a. string variable, or the string canst.ant ca.n be used in a
string expression.

5.9.6 String Variables

A string variable can be assigned a value by a Compute instruction. For
example,

c: Z$ 0 vwxvz·

assigns the string value IJIJXYZ to string variable Z$.

A string variable cannot be used in a Compute instruction until space has been
alloc.i.tcd for it by the Dimension (0:) instructic.n (see scctiun 5.10 or .;.
description of the Dimension instruction). The Cl: instruction est;.bl shes the
maximum length for the string variable. The length of the sstrir,J ·,a.,· s.l:o: c~~
be from 1 thro<>5h 2S6 ch~racters.

Page 81

The chara~ters in a string are stared •ram left to right. Should the ma ximum
1ength of the string variable not be large enough to contain the characters
as;igned to it, ch.:\racters .).re truncated (deleted) on the right.

For e xeo.mple, the Dimensian instruction

D: Z$< 10)

assigns the string variable Z$ a ma ximum length of 10.

The instruction

C: Z$ = "Pl]RST1J'JI.JXYZ"

causes the ten cha.racters PORSTU'JI.JX'{ to be stored in ZS. The Z is truncated.

At this point, the current length of ZS is equal to ·the maximum length <lnl.

The instruction

C: Z$ = "JKL"

cause? the characters JKL to be stored in Z$. The current length of Z$ is 3.

Th<> length of a string is cha.nged whenever a different number of character,; 1s
stored in it.

5. 9 .7 String Pseudo-variables

A string pseudo-variable defines a. subset of a string and is designated by a
string variable name fallowed by a subscript. Only the part of the string
variable specified by the subscript is changed; the rest of the string
variable remains the same.

For example, a.s:JJming thC\t space h~6 a lready been reser.,,·ed fer ZS with a
Dimension instruction,

C: Z$ = "DOG ~. PIG"
C: Z$17,3l = "CAT"

results in Z$ = "DOG & C,'.lT"

For another example, the Dimension instructiiJn

O: X'tl15l

assigns a maximum length of 15 to the string variable X$.

Page 82

4/~S . .' 83

H,<>n the instruction

C: X$ = "HORSES AND COi-JS"

assigns HOR!:.ES AtlD COWS to X$. The instruct.ion

C: X$(12,.S) = "C,'.lnLE"

results in the error message B-ERROR. This mE;ns tha. t the subscript {, is out
oi bounds. The C: instruction attempts to assign t.he characters Land E to
positions 16 and 17, but spa.CE is rEserved for only 15 positions by the D:
instruction. To do this opEration, th<> O: instruction must rEserve space for
at least 17 characters for the string variable X$.

The value assigned to a string variable may be padded on the right with spaces
if necessary. For example, with X$ = HORSES ANO COWS, the instruction

C: X$C1,6) = "PIGS"

results in X$ P!GS AND COWS (three spaces between PIGS and AND).

The length of· a string variable does not change as the result of using a
pseudo-v.3riable.

5.9.8 String Functions

A string function perforTDs an operation on a string. The function is
specified by a. key word and the name of the string on which the · operation is
performed is enclosed in parentheses .,fter the key word.

For example, the following instruction

C: X = LEN(R$)

calculates the current length of the string variable R$ &nd -,ssigns that
number to the numeric variable X.

Section 7 describes the string functions available with TI PILOT.

5.9.9 System Variable 7.A (Answer Counter)

A Com?Ute instruction can include the system variable 7.A.

C: N = ::A t 2

assigns the value 7 to N if the value in ::A i;; currentl t 5.

5.9.10 System Variable 7.B <Answer Buffer)

A Compute instruction can include the system varia.ble 7.8.

P~.ge 83

For e;.; a:mple,

C: S$ = 7.8(10,3>

a!::si3ns to s tring v~.ri a ble St the tenth~ Elev enth, and t welfth character-; in
the Ans wer Buffer.

S.9.11 Ei pr~s~ions

An expression in a Compute instruction may canto.in any of four t y pes of
opera.tors: arithmetic opera.tors, relational operators, logical operators, and
string operators.

5.9.11.1 Arithmetic Operato rs

An expression can contain the following arithmetic operators:

S,111bol

**
*
I

+

Opera.tion

Exponenti a tion
Mul tipl iC it tion
Division
Addition
Subtraction

Example

X"*Y <X to the Yth po~er)
X*V
X/Y
x+v
X-Y

Plus <t) and minus (-) can be used to indicate pasitive .;.nd negative numbers.
Numbers are assumed to be pos i ti ·,e, unless indicated otherwise.

5.9.11.2 Relational Opera tors

Relational op12r::1.tors cause a compc1ri-=on of two numbers or strings. The two
i terns which are compare d must be of the same kind (t,ath numeric or both
string). The result of a relational operation is either the numeric val use
<indicating a true condition) or the numeric value O !indicating a false
cundi tion) .

Symbol

<
>

<=
>=

RELATIONAL OPERATORS

Me:tning

equals
less than
greater than
not equal to
less than or equal to
greater than o r equal to

Page 34

Example

X=Y
X<-:i
X>Y
X<>V
X<=Y
X~=='I

5.9.11.3 Logical Operators

An expression c~n contain logic3l operators. Although logical operators can
be u=ed 1..1i th .3.ny numeric va.lue, they a.re iT1ost often used with the numeric
results of relational operators. The result of a logic~l G?eration is either
t~.>? num~ric ·,1ac.lue 1, (indicating a true condition) or the mm1eric value O
(i•dic.sting a f.alse condition). When the logic2.l operators evaluatr, a numeric
v"lue, any non-zero Vcl.lue is defined c.s a true condition.

SY11,bol

tilde

LOGICAL OPERATORS

Meaning

Nat X. If Xis 0, then
Xis 1. If Xis non-zero,

then Xis 0.

x and v. X&Y is 1 (true) if
and only if x is non-!ero and
'(is non-zero. If either x or
y is 0, X&Y is 0 (false>.

X or Y. ~!V !s 1 (true) if
either Xis non-zero or Vis
non-zero, or both are non-zero.
If both X and V are equal ta 0,
X!V is O (false>.

s.0.11.4 String Operator

Example

tilde X

X&Y

X!V

The string operator is the concatenation symbol designated by double
exclamation marks (! 'l. Concatenation is the joining of one string to another.

As an example,

C: X$
C: Y$
C: Z$

"DOG"
"CAT"
XS!!" & "!!'($

result~ in Z$ = "DOG 8. CAT"

5.9.12 Edit Options

The Compute instruction can also be used t_o perform editing on :.tring
variables.

The edit options are as follows.

Sr1T1bol

u

c

xy

S.?.13 Functions

Meaning

Translate entire
5tring to upper-case.

Capitalize the first
c hi'.rc<.c ter in string.

Replace all x characters
with y characters <x and
y can be any character.

Remove all occurrences of
x <x can be any character).

Example

C: Z$ = "Ducklings•
then C: IZ$ U results in zt
DUCKLINGS

C: Z~ = "north" then
C: IZ$ C results in

Z$ =-North

C: Z$ = 'killed" then
C: IZ$ /ld results in
Z$ = kidded.

c: Z$ = •2,soo· then
C: IZ$ I, results in Z$
2500

Arithm~tic and string functions can be included in an expression. The
avail.sble functions are AGS, ATN, COS, EXP, FIX, INT, LOG, LN, RND, SGN, SIN,
SQR, ASC, CHR, FLO, INS, LEN, and STR.

Se" section 8 for a description of these functions.

5. 9 .. 14 Oper~. tor Precedence

When the expression in a Comp1Jte instruction conta.ins more than one ,Jpera.tor,
a set of rules determines the order in which the expression is evaluated. The
rules are as follows.

1. Sub-.,xpressions in the innermost sets of Pi'.rentheses are ev<1luated
first. These values then become oper.rnds for the expression
containing those sets of p.;_rentheses.

2. When the order of evaluation · is not determined by p<1rentheses, the
operations ar~ perfor~ed ~ccording to the prec~dence ~hown in the
following t.~ble.

P;ige 86

l ~~ll TI PILOT

Operator

tilde
**
* / + I I

< <= >=

Order

Performed first
Performed next
Performed next
Performed next
Performed next
Performed last

3. Operations of equal precedence are performed from left to right.
Exponentiation is the exception to this. It is performed from right
to left. Far exc\lnple, in the expression 8**5**2 the value 5 is
first raised to the power of 2, and then 8 is raised to the 25th
power.

5.9.15 Examples

Here are some examples of how expressions dre evaluated.

c: x l2./3tl

c: x 12/(3t1)

c: x 12-<3>1>

c: x < 12/(4-(3>1l))**2

S.10 Oimension--0:

Format

results in X 5.

results in X 3.

results in X 11; The value of the
relational e,:pression <3>1) is 1 (the
true condition).

re:.ul ts in X :;;; 16. The innermost sat
of parentheses <3>1) is evaluated
first. Its value is 1 (the true
condition). The next outer set is
evaluated next (4-(3:ct)). Its vabe is
4 minus 1, or 3. The outermost set of
parentheses is evaluated next
(12/(4-(3>1lll. Its value is 12 divided
by 3, or 4. Finally, this intermedi-~te
result is rais;;d to the 2nd power (4 **
2), or 16.

D: oum~::.ic=.lC.!:~:£::o~m.:<i:i!egecf,ioi=~=cllC; ••• l
o: ~1!:ins=~i~ble<iniegeclC; ••• I

Thi? Dimensic,n ir.structii:.n reserve: space for .o.ume.r.it=;.c..r;,..,y~ and for
.:.!cina=!;!aci~l:ll~s. More than one var·iable can be defined by C\n individu!:!.!
Cime n:ion instruction by s~par~ting each vari able entry with a ~emicalon <;i.

A numeric .array or a =tring va.ri.a.ble mu:.t have SPil.ce reserved by a. Dimension
ir,struction before it is used S!lsewhere in a progr~m. It is norma.11-, good
~rogra.mming practic2 to put all Dimension instructions at or ver}~ neir the
t.e·Ji~Oir;g of the ~rer3ra1n.

P,.ge a 7

A numeric .array can have one or two dimensions. The values for the dimen1Eions
of a DUID~rit :l.rr~ can range from O through 400 <maximum). A string vari•ble
can have one dimension. The values for the dirnen~ion of a .siciog ~c.LI.bl~ can
range from O through '199 (maximum).

TI PILOT allows storage of up to 400 numeric values and 2000 single character
values. However, this space is shared by the PILOT interpreter for
scr.a.tch-pad use of temporary varieo.bles. The Workspa,:e instruction returns the
available memory s.pace. <See section 5.17--Worlcspace.)

Though a string value can be as long as 999 characters, the m~.ximum number of
characters for a string variable that can be stored on a disk record is 127.
Also, the screen displays only 80 characters of a string value. If a string
v,.lue exceeds 80 characters, the BOth character displayed is replaced by the
last char~.cter. in the string. Therefore, it is best to limit the length of a
string variable to a maximum of 80 characters.

Examples

D: ZSC 10,7>

D: Z$(18)

(defines a numeric array called ZS with 10 rows and 7
columns.)

defines a string variable with a maximum length of 18
characters.

5.11 Execute Indirect--XI:

Format

The Execute Indirect instruction causes the perform,.nce of an instruction
which has been constructed in a .=.±.c.io!i=~Jcizbl.e. The 5tring varic;1ble must
contain characters which compose a le!li timate TI PILOT instr1Jction. The
instruction in the string variable cannot have a label precECing it.

Example

Suppose that a program has ten kinds of exercises a.nd each exercise grnup
begins with the label EXERx, where xis a number from 1 through 10. The
student could be ~.llowed to choose an exercise group as follows.

D: X$C2);Z$(9)
c: X = 0
T: CHOOSE AN EXERCISE

1 THROUGH 10.
GROUP BY ENTERING A NUMBER FROM

A: tX
TE(X
JEC: IJA

1 I v ' . h / 10): ENTER A NUMBER FROM 1 THROUGH 10.

C: X$ = STR(X)
C: zt = "J: E:<ER"! !X$
XI: Z$

The first two instr•Jctions resser•,e sp«ce for thoe string variables :<3 and :'3
and the third instruction defines the- numeric variabl·? X. The fcurt.h .;,nd
fifth instructions (,- Tf pe instruction a.nd a. Typ,a continua.hon) prompt the
student.

The sixth instruction C\ccep+_s the student':=· resp,:mse L,nd the number en'ts·r2d by
the student is «sss{gr,ed to the numeric variable X. If the response does not
include a number (the E conditioner is set) or if the number entered is not in
the required range, the seventh instruction displays a message to remind the
student to enter a number from 1 through 10.

If the student respon:e is not acceptable, the eighth instruction causes a
jump back to the Accept instruction. If the student response is acceptable,
the ninth instruction convert: the number entered into a string value called
X$, and the tenth instruction concatenates this string value with the
,:h.,racters J: E:<ER to form an instruction in the string variable Z$. The
eleventh instruction then executes the instruction which has been composed in
2'.$.

5.12 File Output--FO:

Format:

The File Output instruction lets ,·ou write a r·ecord to a file an a disf.et•.a.
You can use this instruction to save data such as student replies, test
scores, performance statistics, or information relevant to a progr~m on a
diskette.

Before a file can be opened, space for the string variable must be reser·,ed
with a Dimension instruction, and the variable must be define<! with a Compute
instruction. The Di1r,ension instruction spe•=ifies the number of chara.cters in
the string variable (up to 15 characters are penaissible for a filename). The
Compute instruction assigns the <'ilena.me to the s1l:io=,;1i:i.a:..bl~.

The first FO: instruction in• program opens the file. The file rr~st be
opened before any other File instructions are done. Otherwise the cc,mputer
will not know what file to use. The record number used in this FO:
instruction sets the maximum number of records for the file. This number can
range up to 695 if all of the space on the diskette is unused. See the File~
ma.r,ua.l for more information on disk structures.

The ex,,mple below illustrates the instructions necessary to ·~pen a file.

O: G$Cl5>

C: Gt= "MYFILENAME•
Fa: 35,G$

Re:erves space for the string variable us~d to
contain the filename.
Assigns the f ilena.me to. the string vari.sble Gt.
Cpe!ls file ,:alled MVFILENAME with 35 records
avail.able.

Page 69

Mote that the filename mu:t .;dherC? to the UCSO p-Sy:te1n syntax. The abav~
example assigns the full file name of 4:MYFIL81AHE (4 i~ the unit number of
disl, drive 1). If a prefix volume ha.d be!!n designated by using the Filer (for
ex;,mple, "PILOT:"), then the file "'ould be under the filename
PILOT:MYFILENAME. R,,afer to the Filer ma.nual for mor-e information.

In ;ubs.e·~uent FO: ins..a..ructions, the r~cord number is an integer ,:onstant or a
numef'ic variable which specifies the individual record that is writt~n (695
?O-;~ible records on ane di ·5kette). The record number ranges from rero to the
si:e of the file. A record i; 128 bytes long (the 128th byte is always a
co.rri.ag2-return character). The data in the string-variable are written to
the record on diskette.

The data are p.added on the right with spaces to a length of 127, if
necessary. Also, if the data exceed the ~aximum length of the
string-variable, the data are truncated (deleted) on the right.

The following is an example of the use of an FO: instruction after a file has
been opened by an ea.rlier FO: instruction.

Z$ "THE AVERAGE SCORE IS 93.6"

FO: 8,Z$

In the above example the FO: instruction writes the characters in the string
variable Z$ to record number 8 of a file on diskette. The data are padded on
the right with enough spaces to ma.ke the record length equal to 127.

S.13 File Input--FI:

Format

The File Input instruction lets you rea.d a record from a file ,Jn a diskette.
You can use this instruction to read data such as student replies, test
;ci'Jres, perfor:nl:'.nce statistics, or infor:nation relevant to a program which wa:
previtllJsly saved on a diskette.

In order for an FI: instruction to be performed, the file must fir·st be OFh:? ned
by the first FO: instruction in the program. Otherwise the computer will not
know what file to re;,d from. (See section 5.12--File Output).

The C!::!:Cr:d=!l!.!m.b~r is an inte9er constant or a numeric va.riable which specifie~
the ir,dividua.l record which is re~d. The record number ranges from zero ta
the size of the file. A record is 129 bytes long. The data in the record are
rea.d fr·om the diskette and pl.;.ced in the string ·,ariable.

?age 90

• • j ,_ ; 1 I : L 1-1 r ~ ~.

n,e following example illustrates the FI: instruction.

O: Z'.SC256l

FI: 67,Z$

The Dimension statement sets the maximum size of the string variable:$ to 256
characters, and then the FI: instruction reads record number 67 from a
diskette file into Z$. However, only 127 char~cters are read. This is
bec,use 127 is the length of a record, arod the FI: and FO: instructions will
not cross record boundaries.

5.14 Graphics--G:

Format

The Graphics instruction causes pictorial information to be displayed. The
Graphics instr1Jctian let; you take adv6.ntag~ of the advi?.nced graphics
capability of the TI Harne Computer.

Tho?" C.QJDJuill1:: ... !.i..s..i. contains on~ or mar,? of the following commrtnds. E.;c.;-, ·:0111miond
is sep.;r .]ti?d by a. ;,:imicolon <; > and the indi·;idu .::ll par~m~t ... e-rs c·f a c:i",T1rr:and
(when spi?cified) are separ-:\ted by '=' ccmma.

T Eroses =icreen 3.nd =-ets scr·ee-n to text mode. In te:-:t mode, 1:.he
di=play is 40 culumns by 24 lines and you C3nnot us~ sprites.

Fn

Bn

Cn,f ,b

Erases screen and 5e,t.5 screen to pattern mode. In pa+...tern mod~,
+ .. he display is 32 columns by 24 line!: and you can use spri tl?s.

Sets foreground color to n where n is a number from O through 15.
(See Appendix D for a list of the colar'3 and their numbers.)

Sets background color to n where n is a number from O through 15.
(See Appendix D for a list of the ,:olors and their numbers. i

Sets character number n (where n i-s a number ~rom 0 through 255i,
foreground color to f (where f is a number from 0 through 15), and
background Lolar to b (where b is a number from O through 15. S·.?e
Appendix c for character-set groupings.

XO Sets sprite magnification to single. This means that each
char~_cter in a 5pri te occ1Jpi.e;. ju·;t one ,:hara.cter p,~si tian on the
screen.

Xl Sets spr·ite magroific.stion to double. This me~ns that each
character in a sprite takes up four character positions an the
scre<:n. E.sch dot position in the character expands to occupy four
dot positions on the screen. The expansion is from ·a single
magnification and is down and ta the right.

X2 Sets ,e.prite size to single. Thi5 mea.ns that each sprite is
defined by one character.

X3 Sets sprite si:e to double. This means that each sprite is
d;;fin,,,d by four characters that include the character specified.
The first character is the one specified when the sprite was
created if its number is e•,enly divisible by four or the next
smallest number th,t is e•;enly divisible by 4. That char,c+_er is
the upper-left quarter of the sprite. The next quarter is the
lower-left quarter of the sprite. The .next character is the
upper-right quarter of the sprite. The final character is the
lower-right quarter of the sprite. The ch.sracter sp,ecified when
the sprite was created is one of the four thut makes up th>? spri ~e.

M:a:,y Moves cursor to column x (where x is from O through 31 in p~t"tern
mode and O 1:.hrough 39 in ~.ext mode) .lnd r·ow f Cw!"",er~ ·,r is "fr~m O
through 23).

Pc1.ge 92

Wp,x-position,y-position,r

The lJ commeo.nd horizontally dis:pl3.y'; the pattern p (where p is from
O thro•Jgh 2S5 ~nd defined by the l·~~ded pe.ttern file) starting .;. t
position ~,Y (wher'? x-po;.ition is O through :a in pattern mude .~nd
I) throu!jh 39 in text mode, and y-position 1s O through 23) for r
repe-tit'iuns. I.Jh2n the maximum x-ptJsition "s eJo:ceeded .=\ nd 'th~re
a.re still repetitions remaining, the pat~~rn is ·:!:~played on th-=
next row down (y-position + 1) at x-position O.

Vp,x-µosition,y-position,r

The V command vertically displays the pattern p <same as above)
starting at postion x,y (same a.s above) for r repetitions. When
the maximum y-positian i, e xceeded and there are still repetitions
remaining, the pattern is d:ciphr:d on column to the right
(x-position + 1) at y-position 0.

Page 93

Sn,p,c,x-position,y-position.~-velocity,)·- ve locity

The S command creates sprites. Sprites are graphics char.:tcters wh1 h
ho.ve a color i\nd a loc.:\ tion '='.ny""here an the screen. They can be 3-?

in motion in any direction at a variety of speeds, and continue the r
m,Jtiun until it is •:hanJJ?d by the progr-am or th,2 progr~.m .;top-:. i:-1-?Y
move more srnoothly than the usual character which jumps from one
screen position to anothe=r.

The command starts sprite n (where n is from O through 31) with
pattern ? (where p is fr·om O thrG•Jgh 255), color c (where c is from Q
through 15), x-position (where x-po;ition is from O through 255) and
y-position (where y-position is from O through 255), and with
x-veloci ty (where x-velaci ty is from -128 through 127) and y-veloci t-r
(where y-velocity is fr·om -129 thro&Jgh 127).

n is a numeric value from 1 through 28. If the value is that of a
sprite alre,.dy defined, the old sprite is del,ated and replaced by the
new sprite. If the old sprite h~.s a row- or column-•Jeloci ty, and no
new one is specified, the new sprite retains the old velocities.

Sprites pe'\s·5 over fixed cha.r,~cters on the screen. When +.\..lo or mor~
sprites are coincident, the sprite with the lowest sprite number
covers +.he~ other spri +.,:: ·~. I..Jhile five or more spri +_es are on the same
scr':en raw, the one(s) with the highest sprite number(s) disapri?ar.

p may be any integer from 10 through 255 and designates the charact.oc
Pattern. The ch.sracter p~.ttern can be defined by the PATTERN
subprogr:o.m. The ;pr·i te is defined as the character given, and in the
case of d,:,uble-sized ·;r-rites, the next three ,:hctiacters.

c may be any numeric value from O through 15. It determines the
foreground color of the sprite. The background color of a sprite is
always 1, tri'.nspa.rent.

x-position and y-position set the position of the sprite on the
screen. They are numbered consecutively starting with O in the
upper-left-hand corner of the screen. x-position can be from O
through 255, and y-posi tion can be from O through 1?1. ActuaEy,
y-positian c~n bo? as large as 2SS, but the positions from 192 throu~t-.
255 are off the bottom of the scr,~en. (Each character i~ ger,e r:\t 1::d
by an 8 X 8 dot matrix, mc:1.ki~g 25.S po-::itions pos:ible -for eithe!"' x­
or y-~osi tions.) The position of the, sprite is the IJPPer-left-hi'.nd
corner of the character(3) t.1hich d2firies it.

x-velocity and y-velocity may option~.lly be SpF;cif:ed when -t~.e 3~ri ·~.,=
is c1eat,2d. If both :.c-velocity and >-·-velocit·t· ~re .•:ero, the· :pri-t:.e
is stationary. A positive y-velocity moves the sprite down and a
negC\tive y-veloci ty moves it up. A posi tivei ;c-veloci ty moves the
spri +_e to the right. and a negative value move: it to the left. !"f
b,Jt.h x-;ie-loci ty and y-<Jeloci ty are non-:ero, "th~ sprite u1oves at an
angle in a. dir-e-ction deterrr.i.i,:-1 by the Co.ctual V':'.lu~:.

rage 94

Hn

x-velocity and y-velocity can be from -128 through 127. A vnlue
cloSe to zero is very slow. A veo.lue far from zero is ·..,e-ry
f il.5t. When o sprite comes to th,:o edge of the sc re,?n, it
disappears a.nd reappe~r'5 in the correspond ins p,Jsi t.ion on the
other side of the screen.

Halt$. sprite n. Sprite disappears f ram screen.

D Restores default character set.

E.15 Sour,d-S:

Format

s: v,c:::imm.:1od=lis.1

The Sound instruction lets you send sound to the student.

ihe instruction starts tt.e proces;ing of a sound list for the voice v (wh::re v
is from 1 through 4). l..'oices 1, 2, ..:1.nd 3 are for tones ~.nd not•?S. I.Joice 4 i'!
for periodic noise and white noise.

There is an important difference between .!,:mz.5 and .o::i.±~. A tone sounds for
the entire duration specified; a note sounds fur 7/ 8 of the duration sµe,:ifi2d
and is silent for the remaining 1/8 of the duration. Thus, a series of tor.es
sounds connected or le.ga!c, and a series of notes ·;uunds sepo.r.ated or s..±.:..~~.:.ia ..

E~ch command in a~~ <except for the last one) is followed by a
se-micolon. The semicolon is optional after the last comma.nd in a
c::w'D.l~Od=.l:~!. The individual parameters of a cu1r,meo.nd (when• specified) are
separated by a comma. The ~~llllllaild-=li!<i consists of one or more of the
following commands.

Page 95

c

H

Vn

Clears the sound list for ·~ice v.

Hal +.s sound v.

Adds val•Jme comm ... ,nd to the sound list, where n is a numbi?r
from O through 15 (0 is silence and 15 is the loude~t volume).
Uses 2 br tes.

Tp,d Adds a tone command to the sound list, with pitch of
P (110 ••. 16383) and duration of d (1 ••• 16). Uses 3 bytes.

Sn Sets tempo (speed) of voice v to n (1. •• 32767>. The tempo n is
the duration ·~f one beat in milliseconds. Uses 1 byte.

Np,d Adds a note command to the sound list, where pitch is p
(110 ••• 16383), and duration is d (1 ••• 16). Uses 3 bytes.

Wt,d Adds a white noise to the sound list <only with voice 4) of type
t (0 ••• 3) and duration, d (1 ... 16). Uses 3 bytes.

Yt,d Adds a periodic noise to the sound list (only with voice 4) of
type t (0 ••• 3) and dur«t.ion, d (1. •• 16). Uses 3 bytes.

p Ends sound list for voice ·,; plays the sound list. Uses 1 byte.

It is necessary to clear the sound list <using the C command) before playing
+.he next sound list.

Sound lists built by using the above commands require memory space, the amount
of which v.sries ~.,:cording to the number of .snd types of command-a used. Up to
400 bytes of memory ca.n be used for each voice. Note that the amount of
memory (measured in bytes i required by each command is given at the end of the
description.

An extremely long sound list could exceed the 400 b~·+.e 1 imi +.. To determine 1 f
a gi·,en sound list. does exceed this limit, ~.dd the tot.al number of bytes used
b-,- all of the commands in the sound list.

Also note that if a program contains a very lcng sound list followed by
another sound list, a disk operation to acce~.s commands in the subsequent
sound list could cut short or otherwise interfere with the pl,wing of the
first sound list. If this occurs, us~ ioi. counting loop betueen ;vund list5 to
delay further PILOT interpretations so the fir,;t_ sound lis t can ccm,p:,ofo
playing. Below is a !::eo.mple counting loop _.

C: X=O
*LOOP
C: X=XH
J <X 0:1Sl: LOOP

It is ni?·:essary to cli?ar -the sound list for a voic'? (using the C i:ommc<.nd)
befcre making .and playing another sound list.

P.;_ge 96

5.16 Speech--V:

Forma.t

The Speech instruction allows yc;u to send speech to th" student. HOTE: The
TM

Sclid-5!~!~_se~~b
function.

Synthesizer is required for this instruction to

Tt,e computer spea.ks the string of '-Ords cont.sined in the ;;.!c.iog=~~::ullle
following the V: instruction. Space for the ~.ir:i.os=~.<:.Ci~bl~ must be reserved
(by .. O: instruction) and t~,e v .. ri.sble must be defined (by a c: inst.ructic,nl
for the V: instruction to work. The es,-,mple belo" illustr.~tes this.

O: A$C25)
C: A$="HELLO THERE"
V: A$

5.17 Workspace--W:

(Computer speaks the "ords contained in the
string variable A$.>

The Worksp,.ce instruction returns the current locations of the numeric buffer
pointer and the chara,:ter buffer pointer. This instruction also returns the
number of loc .. tions available for additional string and numeric va.lues. The
screen displays:

CURRENT WORKSPACE STATUS
The character buffer pointer
is .. t-U*·
There .. re*** locations available
for string variables and scratch pad use.
The numeric buffer pointer
is at-tu.
There are*** locations available
for numeric v .. lues and scr .. tch p .. d use.

The number of avail .. ble locations given is the current amount of unused memory
left in the buffers. This available memory can be used for programs and by
the system (scratch pad area).

SECTION 6: STUDENT CGMMAriDS

There are two commands which can be entered by the student while a PILOT
progr<=1m is running.. Ei 1her one of the commands may be entered by the st_udent
in c::mjunction with -:'.n A;: ,: .~pt ins+_ruction. Ectch of th~ individ,Jal cumrnands
may be enabled or disabled by an option code used with the PR: instruction
(:;ee :;ection 5.1 for ~. des,:ription of the Problem instruct.ion>. If a P~:
instruction has enabled a command, the req•Jested ~.ction is performed. If the
command is disabled, a command is treated just as any other r12sponse.

6.1 GOTO Command

Format

GOTO d~siinaii~o

The GOTO command le+.s a student initiate a. jump frc;n the currE:?nt location to
.snother place in the progr~.m. You would normally tell the student during the
course of the program of this capability and desscribe to the student the
possible destinations. You used the GOTO cc,mma.nd with the DEMO program
included on the diskette.

The destination may be any of the choices available with the Jump
ins1:rLJction.. Normal.J~', the destination is a l.;.bel. Occ:o.sion.;;.llY, o. @P
destin.1tion may be useful.

You may find the GOTO command useful also when you are testing your prognm.
You can jump from one section ,Jf your progrc.m to c:\nother to exit a loop or ta
bypass a. section of the program which either has a bug in it or is already
known to be correct.

As :1.n e~ample, in re5pans2 to a.n A,:cept instruction, a student may enter

GOTO Pf'OGS

Format

The Esca.pe command ~et.s ,;. student call a spe-:i.;l routine which has beeen built
into the program.

When the Escape command is enabled by a PR: instruction, TI PILOT ex.;mir,es the
first character in each student response, looking for a "@" characteer. If one
is found, n PILOT automatically performs the instruction, "U: SYSX". There
must be a subroutine na.med 5\-'SX in the progr..;m to re,:eiv,?.- c~n+_rol. The
subroutine can scan the text entered by the student a.nd perform the deesired
function.

The return frnm the SVSX subroutine must be via an E: instruction. The return
is back to the instruction fol lowing the lkcept instruction unless a l.abel or
other destination is included in the End instr·uction (see section 5.8 for ,;.
description of the E: instruction).

Vuu c~n use the Escape command to build cus+_om execution time commands. Far
example, . a student (or author) could be ,llDwEd to build a TI PILOT
in~t~· . .:c•_ion -2\S fallows.

D: R$C40);Z$<50)

*SYSX
C: R$ = ::e
C: Z$ @ U
XI: Z$
E:

(It is good programming pr.ictice to re:::r·;e ~pa...:2
for all string variables at the beginning of your
progra.m.)

If, in response to an Acc:;pt instruction, the student ;;hould enter •,ff: tti,
this routine would display the value of the nu~eric variable N and then r~turn
control to the instruction following the Accept instruction.

Pa.ge ?9

SECTIOIJ 7: FUNCTIONS

i .1 Numeric Functions

Here is .; list of eac~ of the TI PILOT numeric functions, the definition of
the function,. a.nd an e:i:<1.mple of the function.

Eun~.l.i~n

ABS(Nl

ATNCN)

COS(Nl

EXP(Nl

FIX<Nl

INT<Nl

LOG(N)

LN(Nl

RND<N)

£GfHN)

SIIHNl

::DRCNl

Absolute value of N

Arctangent of N
(in radians)

Cosine of N
(in radians)

e "* N

Truncate N

Inte ger of N

B~se 10 logarithm
of N

Base e logarithm
of ll

Random Number
If N < 1, RND CNl
a number frc,m O
to <1 (a fractional
n1J1r1ber).

If N > or = 1,
RNO<N> = an integer
from O to N-1.

Sign of N:
-1 for negativ e N,
O for N = 0,
1 for PQsit!ve N

Sine of N
~in r~.d ieo.n:.)

Squ€-.re root ,:if N

P,;ge 100

Ez.a,mele

AEJS(-8.7> 8.7
ASS(6l 6

ATN<O> 0

COS(3.14l -1

EXP (ll = 2.71828 •••
EXP<3.Bl = 44.701

FIX (10.Bl = 10
FIX(-10.8) ~ -10

UlT(lO . Bl = 10
HlT<-10.Bl -11

LDG(100)
LOG(220)

2
S.3936 •• •

LN(lO) = 2.3026 •••
LN(ll = 1.?459

RllD (0.8) = 0 to .9o • • •

RN0(6) 0,1,2,3,4, r,r S

SGIH-8.6) = -1
SGN (4-4) = 0
SGIHS6E-7l = 1

SIN <3.14/C:) = 1

SGR(25) 5

' : , __ , i

7 .2 String Functions

Here is a list of each of the Tl PILOT string functions, the definition of th"
function, o.nd an example of the function.

Euoc.iico

ASC< R$)

CHR<N>

FLO< R$)

INS<N,Q$,R$l

LE!l{R$)

Qi:fioi.iicio

The ASCII ,:ode
v~lue of the first
character in R$

(See the ASCII
ch-3.rac ter ,:,:,de in
Appendix 6)

The character whose
ASCII character code
is N

The numeric value of
the first number in
R$. The numeric
value is in floating
point farm.at.

A number which i -; the
starting position of
the string 0$ within
the string R$.
The search is started
in the Nth position
of string R$.
If the characters in
0$ are not found
within R$, N is set
to zero.
0$ and R$ can not
total a length gre.ater
than 2S5.

A number which is the
current length of R$.

Page 101

E::lm£le

C: S$ = 'HORSES"

C: X = ASC (5$>

causes X = 72

C: S$ = CllR(10)

causes a line feed
character to be
a.sdgned to S$.

C: S$ = 'IT IS 8 BELOW"

c: N = FLO<S$l

ca.uses N = 8

c: S$ "KITTENS"

c: V$ 11 TEN 11

c: N = INS{2,Y$,S$i

CC".US2S N = 4

C: 5$ = 'l<ITTENS'

C: N = LErl<SSl

c-?.uses N = 7

STR(Nl A conversion of N
to a. string.
The r e5u 1 ti n'3
characters in the
string ~ill express
a decimal format if
the number is in the
lirni ts of a. decimal
format; other,.,i se,
the string will
express a floating
point format.

SECTION 8: PROGRAMMING RECOMMENDATIONS

c: X = 86.5

C: SS = STR(X)

results in SS
being assigned
the char~.cters
8, 6, . , a nd 5

This manual introduces you to the TI PILOT language and helps you le~rn the
langua.ge so that you can write your awn programs. In developing programs
using TI PILOT, there are techniques th~.t you can use which will improve the
effecti veness and efficiency of those progr~.ms. This section contains sol',e
re,:c,mmendc:".tions that you may find useful.

8.1 Planning

You will save time by carefully planning your program before you begin writing
it. Define the purpose of the program and determine the sequence of topics to
be presented.

Look for opportuni ti ,ass ta improve the effect.iveness of your program by using
the graphics and sound features of the TI Home Computer; for example, us.e
graphs and animation where they are suitable. You will find it helpful to
design the screen displays before beginning to write the progr.~m. Use
quadriruled paper to draw the graphics display and to plan the text displays
that will appear on the screen.

P~ge 102

8.2 Program Structures

As you begin composing your progr ~m use a top-down design ;:iroc;,ss; that is,
first define the progr; .. m f1Jncti c :1s r. :32rier~.1 :o.r-id then defin·~ -= ~,..::-1 ~·Jnctiuil in
mc: r ,:? det:i.il. Divide the functi,Jns nto sep.;.r.ate progr .;'.m mcdules: ~nd '"'~ '!-' Ou
write the progrc1.m, start with the most 3ener~l progr-3m module-:: and t_hen
r'savelop the more de'tailed progr.~m modules.

Strive for a simple progr2.m structun!; that is, use the most strdightfurward
~equence of instructions you can.

As an example, the fallowing program : .egment displays one of -=ight directions
corresponding to a c.Jmpass heading.. A hec'.ding oi 337 .5 degrees to O degrees
and O degrees to 22.5 de9rees produces a direction of North; a heilding oT 22.5
degrees to 67 .S degrees produce: ii direction oT Northeast; a. hea.ding of 67 .S
degrees to 112.S degrees produces a direction oT East; and so forth.

R:
R: H IS A NUMERIC VARIABLE CONTAINING A HEADING
R:

T«CH >= 337.S> & CH < 360)) ! ((H >= Ol & CH
TC CH >= 202.5) & <H 247 .S)): SOUTHWEST
TC C1i >= 67 .5) & CH < 112.Sl): EAST
TCH >= 360i: HEADING IS 'TOO LARGE
TC C1i) = 292.5) & CH 337 .5) l: NORTHWEST
T<CH ·· ·= 22.5> & CH< 67.Sll: NORTHEAST
T<CH >= 157 .5) & CH •'. 202.5)): SOUTH
T«H >= 247 .5l & (H < 292.5) l: WEST
TCH Ol: HEADING IS TOO SMALL
TC CH >= 112.Sl & CH < 157 .Sl l: SOUTHWEST

P~ge 103

22.Si »: NORTH

Altholigh t.he program will work, the fallo\.Jin~ progr~.m segment is mar,?
stra ightforward.

T<H < Ol: HEADING IS TOO SMALL
T(((H >= 337.Sl & CH C 360ll!l(H >= 0) & IH C 22.S!ll: NORTH
T«H >= 22.5) & (H < 67 .5) I: NORTHEAST
T(CH >= 67.5) & <H < 112.S>>: EAST
TC<H >= 112.5) & (H < 157.5)); SOUTHEAST
TC<H 157.S) & CH< 202.S)): SOUTH
TC(H >= 202.5) & CH< 247.5)): SOUTHWEST
TIIH) = 247.5) & CH< 292.5 11 : WEST
T((H >= 292.S) & (H < 337.51): NORTHWEST
T< H >= 360>: HEADING IS TOO LARGE

Within a program, group all of the variable defini ticin statements at the
beginning of the program. Put all of the Compute statements together that
define numeric variables and put all of the Dimension statements together
defining n•Jmeric ~.rrays and string vari~.bles. Use Remark statements to
describe these variables as they a.re defined "t the beginning of the program.

For example, the following progre.m segment defines the program variables.

R:
R: TI1E FOLLOWING NUMERIC VARIABLES 11RE USED:
R:
R: N - NUtlBER OF QUESTIONS
R: C - NUMBER OF CORRECT ANSWERS
R: P - PERCENTAGE OF CORRECT ANSliERS
R:

C: N O
c: C O
c: P O

R:
P.: TI1E FOLLOWING STRING VARIABLES ARE USED:
R:
R: A$ = STUDENT 'S NAME
R:

D: A$(30l
R:

P:,ge 104

8.3 Subroutines

'Jery often you will find it useful ta creata ~- :.ubroutine tu ;:·t=!''f ·:,r-;:-1 a
specific progr,;o.m function.

When you cre:'l.te a subroutine, you are less likely to introduce •bug s " in ,our
pragrc.m bi construc~ing the -:ubr,:Jutine- with onl;· one entry point a.nd or1e e,:(it
point; that is, the subroutine should be constructed to receive control frc,m
a Cii.lling program at only one point (one specific label> and 1,.,1hen the
subroutine returns control ta a calling program, it should do so frc,m only one
point.

Here is an example of a progrc<:m :.egment that includes tt,,,jo calling programs and
,,. subroutir,e that has more than one entry point and mare than one exit p,Jint.

R: THIS IS A CALLING PROGRAM.

U:SUBA

R: THIS IS ANOTHER CAL.LING PROGRAM.

U: SUBS

(Call the subroutine at
one entry point)

(Call the subroutine at a
second entry paint >

R: THIS IS THE SUBROUTWE.

*SUBA (one entry point)

c: z = x * v
J: CHECK

*SUBB (a second entry point)

C: Z X I V

~CHECI:

*NEG

J<Z < Ol: NEG
E:

C: Z = ABS<Zl
E: (a second e xit point)

(one exit point)

?~.ge 10 6

The- program c.;n be recon~tructed ~o th,:1.t i '!'. is less likel:.r to ,:,=o.u:;:e probl,:•!T.:;
by cre:.ting two subroutines wh,~re e:.o.ch ;;1Jbroutine h'",s only oru:' e-ntr~ ~·Jl:-,-t an-j
ane exit point.

R: THIS IS A CALLING PROGRAM

U: SUBA (calls t~e first ;ubroutine)

U: SUBS (calls the second subroutine)

R: THIS SUBROUTINE MULTIPLIES X TIMES Y.

~sucA

c: z = x * ',(
J< Z >= 0): SUBAE
C: ~ = ABS<Z)

*c·uBAE

E:

R: THIS SUBROUTINE DIVIDES X BY V.

•sues

C: Z =XIV
J< Z <= 0): SIJBBE
C: Z = ABS<Z>

* SUBBE

E:

(Subroutine entry point)

(Subroutine 2xit ~oint >

(Subroutine entry point)

(Subroutine exit point)

Page 107

By div iding different f·Jnctiuns within yo•Jr :,rogr.;.m into separate 1=ubro1Jtines,
you can create a tl libra.ry 11 of program modules that you can move e;.sil)• from
one program to another.

8. ·1 Documentation

Often, when a program is fir,+_ writk .1 (and sometimes even after it ha.s been
used for a while), you will discover a mistake which needs to be corrected, or
you will want ta make <some ch~.nges. Discovering mistakes and changing a
program are easier if the progr"m i<e well documented. The following are ~ome
suggestions re~arding documentation.

Make use of P.emark statements in the progr"m to describe the variables u sed
"nd to de~.cribe the processes in the program. It· is useful to provide a
narrative describing the overall program structure at the beginning of the
progr~.

Use spaces within the statements (where they are allowed) to improv e the
rea.dibility of the program. For example,

c: X (N/12) 3

is easier to read th.in

C: X=<N/ 12)**3

It will also improve the rea.d"bility of your program to use a separate line
for labels and to offset operation codes from the left-hand margin. For
e xc1.mple,

•LABEL

C: X = W/12) "* 3

is e3sier to re-?.d tha n

"LABEL C: X = (N/12) ** 3

Note that though the use of Remark statements and extra spaces is a good
programming practice, they are nane~-;ential to the computer 1 ;; performanc2 of a
program. Remarks and extra spaces do occupy memory and, if over1J:ed, may
c .;use t he program to run somewhat slo\.Jer.

Us e labels I.hat reflect the purpo<ee of I.he progr .sm segment "ssoc ie.ted with ':he
label. Far ex,.;.mple, ins te~.d of using a l.:o.bel like Xl for a progr .;o.m seD:r1ent
that aver c:1.ges r.umbers, use c1. l a.be! like AVERAG.

As }'"OU .begin ta cre ate s everal pragra.ms, y,:iu ma.y want to develop ~

documentation file for the pragr.~ms. Use a file folder for e~.ch program a, nd
include in the f,Jldef' -l print-01Jt c,f +.he ~-tatements in the program, .a. pr:"Jgr .;m
narr ~. tive, .a hi story of any rev isions to th·~ progratr., .;,.nd a description of the
results -of running the- progra.m.

P~ge 108

8.5 Increasing Progr~w Effectiveries:;

There are s2vert::\l techniques you can u·=,e t..:J impro1Je the effe.:tivene<;:..5 uf the
programs you write. A few techniques -:i.re de=:cribe,d below.

8. S .. 1 US:e Personal Names

You can use a strj.ng variable ~.Ji th t:.he (kcept instruction a.nd the Type
in;truction to per5unalize a pro:Jr..;..m for J. s.tudent. For example, you can 1JSe

the Accept instruction to learn the student's name.

T: IJHAT IS YOUR NAME?
A: N$

You can then use the student's name whenever it is ~-PPrapria te. For exmple,

T: DI(, N , TODAY UE WILL STUDY AD'JER8S.

8.5.2 Use Variety

You can us2 H,ea Random <RND) function to add variet,· to a pcogrsrn. For
exGmple, inste~d of giving the same response each time to a correct answer,
give different responses. The following progra,n ;egment shows :,'Ou one way to
·do this.

T: WHEN WAS THE C•ECLARATION OF INDEPEimENCE SIGNED?
A:
M: 1n6
TN: NO, TRY AGAIN
Jtl: @A
U: CORANS

"CORAl~S
c: x
J(x
J(x

R:

RND<3> t 1
3>: THREE
2l: TWO

Pa.ge 109

R: THE NEXT TWO INSTRUCTIONS ARE PERFORMED IF X
R:

R:

T: GOOD.
J: RETURN

R: THE NEXT TWO HlSTRUCTIDNS ARE ~C:RF0Rt1ED IF X 2
R:
"TWO

R:

T: THAT'S CORRECT.
J: RETURN

R: THE HEXT INSTRUCTION IS PERFORMED IF X 3
R:
*THREE

T: YOU GOT IT RIGHT!
*RETU~

E:

In this example, the -first in~truction poses the question. The secc,nd
instr1Jction accepts the student's response. The third instruction matches the
response with the correct .J.nswer. If the resp,:lnse is not the correct a. ns\.,cer,
the fourth and fifth instr•1ctions displ,-y the message NO, TRY AGAIN and awaits
another response.

If the response is correct. the sixth instruction calls the subroutine
COR!'.NS. The subroutine assigns a random int.eger from 1 through 3 to the
numeric variable X. The rum function in the first instruction of the
subroutine produces a rand um number uf 0, 1, or 2, .='.nd 1 is .e'.dded to the
random number to make X equal to 1, 2, or 3.

F'eo.:3e 110

8.5.3 Use the XI: Instruction to E~p~rj.~ent with Other Instructions

As yc,u develop ~ progr.;\11\J ·/ olJ a1rtY find it helj:ful to use the Execut.e Indirect
(XI:) instruction to experiment with other instructions. For 2x ample, t.h'='
full awing is a short progr;im 1.Jhich i,..i;ill let l OU experiment with the Gr,Jphic 5
i ns true t ion.

PR:
R:
R: THIS PROGRAM ACCEPTS CHARACTERS ENTERED FROM THE t:EYsonRD
R: AND USES THESE CHARACTERS AS A COMhAND--l.IST FOR A
R: GRAPHICS INSTRUCTION. THE GRArHICS INSTRUCTION WITH
R: THE COMMAND-LIST WHICH WAS ENTERED IS PERFORMED 8'{ USING
R: AN XI: INSTRUCTI01l.
R:
R: THE PROGRAM PERFORMS EACH G: COMMAPD Al·ID THEN LOOPS BACK
R: TO ACCEPT ANOTHER INPUT FOR ANOTHER G: INSTRUCTION. THE
R: PROGRAM REMAINS IN THIS LOOP UNTIL THE WORD QUIT IS
R: 8HERED. AT THHT TIME, THE PROGRAM ENDS ANO RETURNS TO
R: THE P-SYSTEM.

R: THE FOLLOWING STRING VARIABLES ARE USED:
R:
R: G$-USED TO HOLD THE INSTRUCTION PERFORMED BY
R: THE XI: INSTRUCTION.
R: A$-USED TO HOLD THE COMMAND-LIST WHICH IS
R: ENTERED FROM THE KE'iSOARD.
R:

D: G$C80l
D: A$(78)

*r,CCEPT
A: A
M: GUIT
JY: END
C: G$ = "G:"! !A$
XI: G$
J: ACCEPT

*ENO
E:

it, '- OF Dli ,- !CULT'~

1. Be sure that th,~ di;kette :-,au ar!? u::ing i5 the correct une. U=~ t!-,e
l(ist-directory) command in the Filer to check for the correct diskette
or progra•.

2. Ensure that your Memory Expansion unit, P-Code Plc!ripheral, .and Disk
System a.re properly connei:+.ed and turned ·~n. 9e certain that you have
turned on a.11 P·~riph~ral units and ha,.•e inf:erted the appropriate di ·;ke+.te
before you turn on the comp1Jter.

"· If your progr.am does not a_ppear to be working correctly, end the session
and remove the diskette from the disk drive. Insert the disket+_e agair.,
and follow the "Getting Started" instructions carefully. If the prc-,g r ..-,m
still does not appear ta be working ?MPerly, remove the diskette from
the disk drive, turn the computer i\.nd ,'-11 peripherals off, wait 10
seconds, and t.urn them on again in the order described above. Then load
the program age.in.

4. If you are h~ing difficTJlty in operating your computer or a.ri::? receiv ing
error messages, refer to the "Mainten2-.nce :.n1 'Service Inform~.+.ion" anC
"Error Me~sages 11 =tppendices in the L~s~.c~ P~f~.c~.oce ~lJiJj;:::,, or P-r:ode C.1rd
manual for additional help.

_5. If you continue ta have difficulty with y,our comp•Jter or with TI PIL'JT,
plea·;e contact the de~.ler . fram whom you ~•Jrcheo:~e-d the 1Jnit. or ;>r1~gr~.m for
s~r.,ice directions.

i'~.ge 112

, · · - I , .. _,._ ,, ."11_,'·L

APPENDIX A. LANGU~1CE SUMMARY

..... ~,-2 following i: .:\ S:l.mJTieo.r:1 af the TI PILOT l~nguc-.:3e :i '.l ni:J.x, in,:ludi.-!g :i li:it
of the operation cedes in)lph~batic3l order,~ li~t of the mod ifier~ a11d
,::. r,di+_ic.n l? rs, ·i list oi the Compute instruction upi:?r.ators, a concise
dc·scription of the ~~Ir1ID~Dd=.li~n use-d with Gr,:o.phic~ a.nd Sound instructions,
and a summary of other f~:1.ture:i of thE- l:lngu:,,ge.

S'ltlTAX:

*lzbel ~e=!:.!lde lllQdif.iec~ ,oudiiiooeci~l <celdiioodl=~~r~e~~il::!o>:
ie1i=f.ield

LABELS

Must begin with an *
One through six alphanumeric characters
First character must be alphabetic
May be on a separate line preceding the op-code

OPE~ATION CODES (op-codes>

R: Remark

T: Type

A: Accept

u: Use

E: End

c: Compute

D: Dimension

XI: Execute Indirec:t

FO: File Out?•.Jt

FI: File Input

G: Graphics

s: Sound

·.1: Speech

J: Jo;mp

lzc2!:.!~-f~r:._~_i~mr_in~tcu~!ioo;
(label> (the instruction at ! label> >

l>A (the la.st Accept instruction)
QM <the ne xt Hatch instruction>
~p < the next Problem instruction>

M: Mate h
Special matching features:

& match Dne word and another

7.

*
PR: Problem

Option list:

match one word or
match for a spc:o.ce
match c'.ny single

escape al lawed
GOTO allowed

another
or the start

+:harac ter
or end of an

convert input to lawer-ca::e in Answer Buffer

.:i.nswer

E
G
L
s
u
w
B

r,?mo--.:e spaces from stud2nt' ~ input in An-swer B•JffP.r
con·-:ert input to upper-case in Answer Buff~r
clear labels
clear a.riables

W: Workspeo.ce St.?. tus

11c: If1ERS

;uppres; line feeJ with TtPe (TH:)
automatic jump with li.stch (MJ:>
5pell.ing correction with Match CMS:)

H
J
s
x suppres5 input text ·?diting 1.Jith Acc2r-,t U\)~:)

COtJOITIONEP.S

c
E
N
y

perf arm if last rel.,tianal expre-ssion
perf arm if Error cond1 tion is
perform if No match
perf orrn if Yes match

n perform if :cA equals n

RELATIONAL-EXPRESSION

Enclose-d in parentheses
Instruction performed only if expression is true.
If e~pression is true, C conditioner is set.

TEXT-FIELD

set
1..ldS

Used by individual in5tru,:tions far canst.:Lnt3 l:'.nd va.r·iables.

'.:TIJDENT COMMAPDS

GOTO l"-bd Jump to instructic;n at l.ab=l·

lrue

Esc;;,pe to S1(S:< subroutine. Text, if any, is in za.

COM~lJ f()TIONAL FEATURES

ThE following operators and options can be u-=ed with thE Cumput1: in~.tr1Jctiun ..

C1RITHMETIC OPERATORS

** e~?onentiation

* multiplication

/ di·;ision

positive value or addition

ne~ctive value 01~ subtr:o.ction

Pfl1<TICl 1nl_ 'JPEP.ATO~S

e~ual to

< le~: than

gre.ster than

not e".lual +.o

<= less than or e'1ual to

>= greater than or equal to

LOGICAL OPERATORS

nut

:l. and

or

STEING OPSRATION

1 1 cone a tena tian

ORDER OF OPEP.ATIOHS

tilde

* /

+
< > <> <=

EDIT OPDATIONS

C capitalize first letter

U translate 5tring to upper case

xy replace x characters with y ch~.r~.cters

remove all x characters

??.SE ,. '
uO

Performed first

Perfor·mcd next

Performed ne'.'<t

Performed next

Performed next

Performed last

SYSTEM ','ARIAGL£S

7.D

SUBSCRIPTING

Answer Count2r

Answer Buffer

Sing le-dimension arra:1-c is number of columns.

Double-dimension ~rr:ay-r is number of rows d.r,d
c is number of columns.

tlcill9=.!l,=.Ule< P> pis position of character in sicing=n.;.me
starting from 1.

pis position of char~cter in sicin:a=n=.llle
starting from 1 and 1 is length of sub-string.

GRAPHICS COMMANDS

Format of Graphics instruction:

G: !:~mm;,od=1isi

E~ch cou,m.e,nd in the !:.!ID!lla!Dd=1is.!. is separated by " serr,icolon (;).

T

p

Fn

Bn

Cn,f ,b

XO

Xl

X3

Mx,y

Wp,x,y,r

Erases screen and set to text mode.

Erases screen and set to pattern mode.

Sets foreground color ton (0-15).

Sets background color ton C0-15).

Sets character number n C0-255), foreground color to f <0-15),
and background color to b (0-15).

Sets sprite magnification to single.

Sets sprite magnification to double.

Sets sprite size to single.

Sets sprite size to double.

Haves cursor to column position x (0-31 in pattern mode and
0-39 in text mode) and row pasi tion y (0-23;.

Displ.e,ys pattern p horizont.;.lly beginning at column po"i tion x
and row pas i tion ·, for r number of r1epeti tier,:;.

P~_ge 117

Disrl ~y ~ patter n p vertic1lly be~111nin~ ~t column ~as1l1on x
and row ?usition y for r number of repetitions.

3n, p,c ,x-po=i +_i,:in, y -pc,si ti o ri, x-·1eloci ty,:;-veloc i ty.

Hn

D

SOUND COMMANDS

Starts sprite n (0-31) with pattern p <0-255), color c (0-15) ,
x-posi hon (0-255), y-posi tion (0-255), x-veloci ty (-128
through 127>, and y-veloci ty (-128 through 127>.

Halts sprite n (0-31).

Restores default ch~rc.c+_er set.

Format of Sound instruction:

v (1-4) is the voice number (1-3 is for tones and notes; 4 is for periodic a. nd
white noise).

Ea.ch corr,m,:,.nd in the !:Qmmand=li.;.1 is sepc,.rated by a semicolon C;).

C Clears the sound list for voice v.

H H.alts sound v.

tJn Adds a volume commc1.nd to the '::ound list; n (0-15) is the
volume. Uses 2 bytes.

Tp,d Adds a tone command to t:he s.our.d .list with pitch p (110-!638::~
and duration d (1-16). Uses 3 bytes.

Sn

Np,d

Wt,d

Yt,d

p

3PE'::CH

Sets tempo (speed) of voice ·v to n (•J-32.767). Uses 1 b:.r tE.

Adds ., tone comm,a.nd to the sound list with pitch p < 110-1.S333)
and duration d <1-16). Uses 3 bytes.

Adds a white nois<> to the sound list of type t C0-3) e.nd
duration d (1-16) <only with voice 4). Uses 3 bytes.

Adds a periodic noise to t.he sound list of type t (0-39) and
duratior, .j (1·-16' (only with voice 4). Us<>s 3 bytes.

End of th<> sound list for voice v; play the sound list. UsE ·e
1 byte.

Format of Speec~1 instruction:
v: :icio~=~ci~tle

Page 118

APPENDIX B. ASCII DlARACTER CODES

The default characters on the TI-99/4A Computer are the standard ASCII
<:ha.racters for c~des 22 through 127, The following chart lists these
c haracter1:i a.nd thE·ir codes.

ASCII ASCII ASCII
CODE CHARACTER CODE CHARACTER CODE CHARACTER

32 (sp.:.ce > 65 A 97 a
33 (exclamation point) 66 B 98 b
34 . (quote> 67 c 99 c
35 t (number or pound sign) 68 D 100 d
36 $ (dollar> 69 E 101 e
37 % (percent> 70 F 102 f
38 & (ampersand) 71 G 103 g
39 . (apostrophe) 72 H 104 h
40 (open parenthesis) 73 I 105
41 (close parenthesis) 74 J 106 j
42 * (asterisk> 75 K 107 k
43 + (plus> 76 L 108 l
44 , (comma> 77 M 109 11\

45 - <minus> 78 N 110 n
46 (period) 79 0 111 o
47 I (slant) BO p 112 p
48 0 €1 (l 113 q
49 1 82 R 114 r
50 2 83 s 115 s
51 3 84 T 116 t
52 4 85 u. 117 u
53 5 86 IJ 118 " 54 6 87 IJ 119 w
SS 7 88 x 120
56 8 89 v 121 y

57 9 90 z 122
58 (colon> 91 C (open bracket) 123 (left br~Ci!l
59 (semicolon) 92 (reverse slant) 124
60 < (less tha.n> 93 J <close bracket) 125 < right bnce)
61 <eqOJals> 9.4 • (caret) 126 < tilde)
62 > (greater than) 95 <line) 127 Jti. (appeclrs
63 ? (<;uestion mark) 96 (gr .C\ve) on screen as ;1

64 (! (at sign) blc,nk.:

Two additional characters are predfined on the TI-99/'IA Comput<ar. The •:lJt.:~.C
is assigned to ASCII code 30, and the ~l:!se. character is as:igned to cCide 31 .

Pa.ge 119

MPEilDIX C. CHi~RnCTER SETS

These character code·; ~r~ gro1Jped into 32 ;et-:: for •Jse in color gr.:\Phi·:!

progr.;ms. NOTE: C~.sng1ng the foreground and background colors of any one

character within a set causees all eight characteers within· that set to change.

0-7 8-15 16-23 24-31 32-39 40-47 48-55 56-63
64-71 72-79 80-87 88-% 96-103 104-111 112-119 120-12.7
123-135 136-143 144-151 152-159 160-167 168-175 176-183 184-191
192-199 200-207 208-215 216-223 224-231 232-239 240-247 248-255

r+PPEi'O IX D. Tl PILOT COLOR CODES

Col.or Code t Color Code J

Transparent O Medium Red 8
Black 1 Light Re>d 9
Medium Green 2 Dark '(ell ow 10
Light Green 3 Light Yellow 11
Dark Blue 4 Dark Green 12
Light Blue 5 Magenta 13
()a.rk Red 6 Gray 14
Cyan 7 White 15

Note: Though these are the same colors uS'ed in TI BASIC, th,a code numbers
r,.nge from O through 15 in TI PILOT. The ,:ode numbers in TI BASIC range from
1 through 16.

P,;ge 120

AP 0 rnorx E. H!GH-RESOLL!TIOM COLOR COMBINATIONS

The fellowing color combinations produce the shar~est, cleirest character

resolution on the TI-99/'IA color screen. The first color listed is the

foreground color; the second color listed is the background color. Color

codes are included in parentheses.

Black on Medium Green (1, 2)
Bl.;ck on Light Green < 1, 3)
Black on Light Blue (1, 5)
Black on Dark Red (1, 6)
Black on Cyan (1, 7)
Black on Medium Red (1, 8)
Black on Light Red (1, 9)
Black on Dark Yellow (1, 10)
Black on Light Yellow <1, 11)
Black on Dark Green <1, 12)
Black on Hagenta (1, 13)
Black on Gray (1, 14)
Black on White <1, 15)
Medium Green on White (2, 15)
Light Green on Black (3, 1)
Light Green on White (3, 15)
Dark Blue on Light Blue <4, 5)
Oark Blue on Gray (4, 14)
Oark Blue on White (4, 15)
Light Blue on Gray (5, 14)
Light Blue on White (5, 15)
Dark Red on Light Yellow <6, 11)
Dark Red on White (6, 15)
Medium Red on Light Red <8, 9)
Medium Red on Light Yellow (8, 11)
~edium Red on White <B, 15)

Light Red on Black (9, 1)
Light Red on Dark Red (9, 6)
Dark Yellow on Black <10, 1)
Light Yellow on Black (11, 1)
Light Yellow on Dark Red <11, 6)
Dark Green on Light Green (12, 3>
Dark Green on Light Yellow (12, 111
Dark Green on Gray (12, 14r
Dark Green on White (12, 15)
Magenta on Gray (13, l'l)
Magenta on W~ite (13, 15>
Gray on Black (14, 1)
Gray on Dark Slue (14, 4)
Gray on Dark Red (14, 6)
Gray on Dark Green 114, 12i
Gray on White (14, 15)
White on Black (15, 1)
White on Medium Green (15, 2)
White on Light Green <15, 3)
White on Dark Blue (15, 4)
White on Light Blue (15, 5)
White on Dark Red (15, 6)
White on Medium Red (15, 8)
White on Light Red (15, 9)
White on Dark Green ·c 15, 12)
White on Magenta (15, 13)
White on G,, ay (15, 14)

Page 121

c,rrrnorx F. HIJS!CAL rn:•E FREDUGlCJ[S

Th-, following table gives fr<:?~uencies (rounded to integers) of four octaves of
th;, 4:.em::·ered scale (one h.!.lf-step betl.,een notes). While this list does noi:
repr~sent the entire ra.n9e of tones--or even of musici'.l tones--i t c :o.n be
helpful for mu~ici;l.l prag r ~.mmi ng.

Frequency Note Freq·Jency Not~

110 A 440 A (above middle Cl
117 At, Bb 466 At, Bb
123 B 494 B
131 c Clow Cl 523 c (high Cl
139 Ct, Db 554 cc::, Db
147 D 587 D
156 Dt, Eb 622 Dt, Eb
165 E 659 E
175 F 698 F
185 n, Gb 740 Ft, Gb
196 G 7S4 G
208 Gt, Ab 831 Gt, Ab
220 A (below middle Cl 880 A (.;bove high Cl

220 A (below mi,jd le Cl 880 A (above high C>
233 At, Bb 932 At, Bb
247 B 988 B
262 C(middle C> 1047 c
277 Ct, Db 1109 Ct, Db
294 D 1175 [)

311 Dt, Eb 1245 Dt, Eb
330 E 1319 E
3·~9 F 1397 F
370 Ft,Gb 1480 F~,Gb
392 G 1568 G
415 Gt,Ab 1661 Gt,Ab
440 A(above middle Cl 1760 A

P'l'.!e 122

APPENDIX G. COPYiim FILES Arm PRINTWG WITH T'riE p-S','STEM

The following is ;;. decription of how to make a backup copy of p-S '/s te!II disks.
Details ;about the prompts displayed by these programs can be found in the
manuals for the Disk Memory System and p-System Edi t:,r/Fi ler / Utili tics.

A new disl< to be used for making a copy must be properly formatt;;d for
p-S)•stem use. Thi~ c.:~n be done two wa·,...s: by using the Di~k Ma:1.nio.ger, whii:h i:i
the easiest way, or by using p-System Filer ;and Utilities progra»s.

Using the Disk Hanager--Use the Disk Manager to make a backup copy of the
disk. The catalog that is displayed shows one file named PASCAL, which uses
the entire disk.

Using the p-Syste11 methcd--Format the disk with the DFORMAT program. Load the
UTILITY disk in your disk drive and enter

UTILITY.: DFORMAT

in response to the X(ecute command.

After the disk is formatted, a directory must be cre~ted.
whether you use the Disk Ma.n .. ger or the C'FCRMAT pro3r11n to

Thi5 must be done
form~t the disk.

To do this, use the Z<ero cc;mmand in the FILER prc;gram. The disk is now ready
for p-System use.

Use the T<ransfer command in the FILER program. Press I and enter the names
of the disk volumes to be used in the transfer process. Type the name of the
master disk followed by a colon, a comma, and the n .. me of the ,:opy disk
f~llowed by a colon. Note that the copy disk is new disk which was just
formatted and ZCeroed. For example:

MASTER: ,COPV2:

Now remove the FILER disk and insert the Ii.aster disk. Then press ,:return> in
:-esponse to the T(ransfer command. The system checks to see if the disk is in
the drive, reads some data from it, and then displ.;ys the following.

How many blocks? 180 (Y/N)

This prompt :-efers to the number of blocks you wi:h to transfer. Er.ter Y ar.d
the program displays:

Put in COPY2:
Type <space> to cc;nti nue

P,;ge 123

nt thi~ point, remove ~he ~as ter disk, insert the copy disk, nnd rress
··:;p.,c~>. The datn in mer.,ory i5 tr;\n5fer·red to the copy disk. Then the
program displays:

Put in MASTER:
Ty pe <s pace> to continue

Fol lm..,ing the prompts ,:,n "the screen, continue this procedure of ,ll tern<".ting
the master and copy disks until the all of t.he data has been tnnsferr-ed.

\Ji th a ti. ... o-disk sys+.em the procedure, is simplified because there is no neEd to
al terr,ate the disks. The T<ransfer comm.:.nd can be answered with

t4: .~s:

to copy the contents of the disk in unit t4 <Disk Dri v•? 1) onto the one in
unit ts <Disk Drive 21.

Files can be copied is in much the same way. Vou only need to add the file
nc<.me in response to the T< ra.nsfer ,:ornm,3nd.

TEST:MYFILE.TEXT,ARCHIVE:TESTt.TEXT

Files can «lso be 1 isted to the printer using the T< rans fer command with tr,e
follm.-Jing response.

PILOT: DEMO. TEXT, PRINTER: <or)
PILOT: DEMO. TEXT, REMOUT

The PRINTER and REMOUT cha racteristic:; must be set to match those of four
printer. These char;;ct2ristic;; include the b~.ud rate, "the number of data
bits, and whether your printer is connected to the serial or the parallel
output port of the RS232 peripheral.

The p-System can be altered to recognize your printer's parameters by
e,ecuting the program UTILITY: MODRS232. If, for example, your printer is se l
~o 4800 baud and 8 bits of data and you are connected to serial port tt, then
you would execute UTILITY: MODRS232 and press f to change the printer
characteristics to:

RS232.BA=4800.0A=8.PA=O.EC

If you have a TI-99/4 I:np.;;.c t Printer which is ,:onnected to port U 1o1i th none
of the DIP swi tc:ie-:; changed, you may use REMOUT: to list files to the
printer. If you have chan~2d the baud rat';? to 4800 -=tnd have changed nothing
els2, you may use the above example by chc.nging the number of di'.ta bits to i
<DA=ll.

APPENDIX H. DEMO PROG Rl',M

HPR; UGE
R: Your programs will be easier to understand
R: and maintain if the variables are
R: dimensioned .;.nd ini tiali.:ed at the beginning
R: of the program.

*START O :'J1$< BO> ;09$< 1> ;F9$(1 i ;C$C 1 l ;N$C20 l

R: Initialize starting variable values.

C: 09$=CHRC10)
C: F9$CHRC137l
: C$=CHRC12)
C: V1$="PLEASE El'HER YOUR FIRST NAME."

09$ = move cursor down one line
F9$ = forward space
C$ = cle.;.r screen

R: Start of program execution for this section.

T: C
T: WELCOME TO TI PILOT.
T:
T: $V1$
v: V1$:Ask for first name.
A: N
M: 1!2!3!4!5!6!7!S!9'0 :Did they enter any numbers?

TV: Are you a computer? If not, why
did you enter numbers? Try again.

JV: @A

T: 09

:If they did, then do it again.

AS:

The fallowing "menu" lists the names
of pragra• sections within the DEMO
program. To sample one of these
sections, type the word GOTO followed by
the section name, and then press ENTER.
The MENU is displayed again after each
section is finished. Vou may then
sample another section. When you are
ready to leave the DEMO program, type
GOTO END and press ENTER. Vou are then
returned to the p-System promptline.

NOTE:
To leave the Immediate Mode section
(IMMEDl, you must enter the command
GOTO MENU .:ir GOTO END.

Do you wish to continue, N V/N

M: V1y
JV::iENU
~: END

Page !25

R:--- HEN U ---

•·MEHU G: T :set text mode
PR: LIGE
T: tD9$ 09 *~~*•:i,.•~.,.·~+i~.-:~4-*""*..-"~··--"'~~~"'~-tl:****
: *
: *
: *
: *
: "
"
* : *

: *
: *

HATH
'JERDS
GRAPH

MENU

SOU MD
SPEECH
IHHED

END < to q•1i t)

N, enter the program section

"
"
"
*
*
*
*
"
*

you wish to sample. Remember, type GOTO
followed by U,e name, and press ENTER.

A:
H: GOTO;:o
Til: Remember to type GOTO.
JN: @A

R:~- IMMEDIATE HOOE-~

*!HHED

R: This program accepts ~- ci:immand fram
R: the screen and immediately executes
R: it. This is an excellent way to see
R: how maff7' of the PIL::JT c,Jmmands work
R: and experiment with them.

*BEGIN
O: A9$C80) ;89$<80l
c: A9$-CHR(12) :clear screen
T: $A9$ P!LOT Immediate mode
T: Predefined procedures:

U: ABC - dimension a$(256l,b$C256i,c$<256)
<RETURN> - redo last instruction

C: 89$="T:"

*Ll iii: >
AX: $A9$
J(A9$=""): L2
C: 8?$=A~$

*L2 XI: 89$
J: Ll

*ABC D: A$(256l
D: 3$(256)
D: CZC256)
E:
J: ,iENU

P,:;.se !.26

R:---~ AT HD R LL S ---

'<MATH PR: UGE
T: C

*ff******~******
MATH DRILL tel
***********¥.-***

D: T2$<1lT1$(1l;T3$Cll
C: T1$=CHR(12l :clear screen
C: T2$=CHR(08) :backspace
C: T3$=• • :space
O: R1$(7l;R2$(32l;R3$(32j;R4$(5l;R5$(32l;R6$(35l
C: R1$="CORRECT"
C: R2$="NO, THAT IS TOO LARGE. TRY AGAIN.•
C: R3$="NO, THAT IS TOO SMALL, TRY AGAIN.•
C: R4$="RIGHT! •
C: R5$="YOU FORGOT TO CARRY. TRY AGAIN.•
C: R6$="YOU MUST ENTER A NUMBER. TR'{ AGAIN.•
C: A=O
C: N=O
C: M=O
C: W=O

R: Begin the math program.

*GEN J<N-W>4l: GEN2
C: X=RN0(9l
C: Z=RND<7lt2
C: Y=Z-X
J<Y ··:o >: GEN
T: $F9$ tX
T: ttY
T: ---
TH: $T3$
AS: ~A

R: Check for erroneous input.

TE: $R6$
VE: R6$
JE: 00

T:
T< A=ll: $R1$
UC: R1$
etc: N=Ntl
CC: ":A=O
JC: GEN

Cl: W=W+l

Tm.;:) : tR2$
\.1C: R2S
JC: GA

T(A<Z): $R3$
VC: R3$
JC: OA

R: Start Drill t2.

*GErl2
c: 01=0
c: 02=0
C: N=O
C: W=O

*GEN3 T: Tl "**"·*"**
T: DRILL t2
T: ********
J (N-W) 4) : GEN6
C: X= RN0(79ltlO
C: Y= RN0(9l
C: Z=XtY

*GEN4 T: $T3$ tX
T: t tV
T: ---
TH: $T3$ $T3$
AS: tOl

R: Check for erroneous input.

TE: $R6$
VE: R6$
JE: GEN4

TH: $T2$ $T2$
AS: t02

R: Check f'Jr E·rroneous inp•Jt.

TE: $R6$
'JE; R6$
JE: GEN4

T:
C: A=lO*D2t01
T<A=Zl: $R4$
VC: R4$
c1c: N=NH
CC: '.:A=O
JC: GEN3

Cl: W=Wtl

T<AtlO=Z): RS
JC: GEN4
T<A>Zl: $R2$
\IC; R2$
JC: GEN4

T< A-(Zl: $R3$
IJC: R3$
JC: GEN4

*GEH6 T:
T: **** END ****
J: MENU

R:-~ VERBS TEST ---

*VERBS PR: LGS
T: C
T:
T: VERB TEST t1
T:
D: L$<1Sl;S$<20l;S1$(4l;D$(69l
D: D1$(23l;R$<20l;F$C20l;W$(25l
D: M1$(7l;M2$(7l;M3$(8J;U$(5l;V2$Clll
C: V$="Right!"
C: V2$="Not correct.•
C: N=-0
C: 5$="1 He She You They"
C: O$="goin9 to the circus. coming through the rye.•
C: D$=D$!!"getting ,aturated.
C: R$=•? .. ,mi~!i s;;::i s/~C>tre:::~re"
C: F$=•7.is7."'/.am/~Cam7.x xx x•
C: W$= 11 7.*re7.7.*rei:~*rekat1 ! iso.m ! is•
C: L$="111111111111111"

*PICK C: X=RND<Sl-1
C: Y=RND<3l-1
C: 1=3*XtYtl
J<L$<1,1l="O"l: PICK
c: l$(1,1)="0"
C: X1=4*Xtl
C: X2=S*Xtl
C: V1=23*Ytl
C: S1$=S$(X1,4)
C: D1-0<Y1,23)
C: 111$= •11: .. ! ~ R$<X1,4)
C: M2$= "M: "! !F$<Xl,4l
C: ~3$= "M: "!!W$(X2,5l

T:
T: Gl'.'E THE MISSrnG tJE RB.
T: ~51$ $C·1$
A:
M: aint !nin*t
TY: Very funny, now be seriou,;.
JV: OA
XI: Ml$
rt: Right I

1N: V$
o.m: V2$
CV: N=NH
JY<N<6l: PICK

TY:
TY: **** END •***
TY:
JY: FINIS

XI: M2$
rr: The subject is singular, but you need

the other form of the singular ·,erb.
Try Again.

JY: @A

:<I: M3$
TY: Think a.bout the number of people that

are 01. Try Again.
JV: •3A
T: The verb must be one of these

a.re
Try Again.

J: @A

•FINIS
J: MENU

am is

R:-- G R A P H I C S -

•GRAPH PR: UGE
o: 1($(16)
C: K$="------------•

R: Set up foreground and background colors for the
R: various character :.ets.

G: P;F4;B4;Co;1s,1;c32,4,4;
G: C40,15,1;C48,15,1;C56,15,1;C64,15,1;C72,15,1;CS0,15,1;C88,15,1;X2;
G: C184,14,0;C1?2,15,0;C200,1,14;C208,5,12;C140,1,12;C148,12,S;
G: C216,5,12;C224,1,14;C232,1,S;C240,10~0;C1~0.6,0;Cl72,fi,O;

Pa.ge 130

R: St~rt writing :pecial characters.

G: U192,20,4,2;W195,26,4,l;W197,27,4,1;W198,28,4,1;
G: W192,8,5,1;W195,19,S,1;Wl93,20,5,2;W197,22,5,1;
G: U198,23,5,1;W189,25,S,1;WW185,26,5,1;W200,27,5,1;
G: U191,28,5,l;W19S,7,6,1;W193,3,6,1;Wl97,9,6,1;
G: W198,10,6,1;W189,18,6,1;Wl85,19,6,1;W200-20,6,3;
G: W191,23,6,1;W192,24,~,1;W187,2S,6,1;W200,26,6,3;
G: W186,29,6,1;W189,6,7,1;\.1185,7,7,1;W200,8,7,2;
G: W191,10,7,1;W187,1S,7,1;U200,19,7,11;W186,30,7,1;
G: W187,6,8,l;W200,7,8,4;Wl88,11,8,1;Wl90,12,8,1i
G: W192,15,8,l;W184,17,8,1;W200,18,8,13,W1S8,31,8,1i
G: Wl95,2,9,1;W196,3,9,1;W184,S,9,1;W200,6,9,6;
G: W191,12,9,1;W1S4,14,9,1;:.J200,15,9,1;W188,16,9,1;
G: W185,17,9,1;W200,18,9,14;W189,1,10,1;W185,2,10,1;
G: U200,3,10,1;W188,4,10,1;1J185,5,10,1;W200,6,10,7;
G: U188,13,10,l;W185,14,10,1;W200,15,10,17;Wl88,0,11,1;
G: IJ187,1,11,l;W200,2,11,94;1J201,23,7,1iW201,10,8,1;
G: U202,23,8,1;W225,9,9,1;W224,10,9,1;W206,20,9,1;
G: U201,22,9,l;W203,23,9,1;W204,24,9,1;W201,7,10,1;
G: U207,8,10,1;W202,9,10,1;W201,19,10,l;W203,21,10,1;
G: W226,22,10, l;W20S,24, 10, 1 ;W206,6, 11, 1 jl.4202,7, 11, l;
G: W202,13,11,l;W202,19,11,1;W201,24,11,1;W207,25,11,l;
G: U206,26,11,l;W201,5,12,1iW207,7,12,l;W203,13,12,1;W204,14,12,1;
G: W201, 18, 12, l ;IJ225, 23, 12, 1 jlJ226,24, 12, 1 ;U203,27, 12, 1 i
G: W204,28,12,1;W225,4,13,l;W224,5,13,1;W203,3,13,1;W204,9,13,1;
G: W205,14,13,l;W202,18,13,1;W227,23,13,1;W228,24,13,1;
G: W205,28,13,1;W208,0,14,430;W210,6,1S,1;W222,7,15,1;
G: W213,8,15,1;W216,9,15,1iW217,10,15,2iW218,12,15,1;
G: W219, 13, 15, 1 ;IJ220, 14, 15, 1 ;(,J209, S, 16, 1 ;W211,6, 16, l;
G: W232,7,16,1;W234,8,1~,1;1J149,9,16,5;
G: U221,14,16,l;W214,6,17,1;1J149,7,17,2;W223,9,17,1i
G: W212,10,17,l;IJ215,7,18,1;1J212,8,l8,1;

G: 110,19
TI-i: K K
G: W242,3,3,1;
G: W241,3,2,1;W240,2,3,1;W244,4,3,1;W243,3,4,1;

R: Start sprites in notion.

G: 59, 148, 13, 148, 147 ,-SO ,O; 510, 144, 10,98, 118, 10 ,Oi
G: SB,180,9,209,142,15,0; S2,132,3,172,1SS,O,O;
G: 56,129,3,161,151,0,0; 54,136,3;148,157,0,0;
G: 53,140,1,161,162,0,0;
G: Sll,152,15,0,80,1,0; 512,156,15,112,67,1,0;
G: 513,160,15,190,57,1,0; 518,132,15,53,43,1,0;
G: 514,164,8,113,32,0,0;S15,168,B,126,32,0,0;
G: S16,172,8,113,48,0,0;S17,176,8,129,48,0,0;

G: 110,23;
TH: PRESS Q TO QUIT.
AS:
11: O!q
JN: ~A

P~.ge 1~1

R: Stop all spri ~
R: deleted they w
"· and =101.1 dO\,m
R: evident to the

handl i ng. If all sprites arp not
11 rem~in ~ctive in th·~ p-System
he proc?ssing. This may not be
us.er.

G: H2; llS; HI:; H6; 119; 1110; Htl; H12; H13; H18;
G: H3;H14;H15;H16;H17;T;F1;B7;
J; MDJU

R:--- S O U N D --

*SOUND PR: UGE
T: $D9$ 09 $D9$

The SO\Jnd list is being built.
S: 1,C;V15,S99
S: 1,N110,1;N110,1;N220,l;N220,1;N131,1;N131,1;N147,1;N147,1;N156,1;
S: 1,N156,1;N165,1;NlbS,1;N131,1;N131,1;N16S,l;N165,1;
S: 1,N110,l;N110,l;N220,1;N220,l;N131,1;N131,l;N147,1;N147,1;N156,1;
S: 1,N156,1;N165,1;N165,l;N131,1;N131,l;N165,1;N165,1;
S: 1,NtlO, 1 ;NllO, 1 ;N220, 1 ;N220, 1 ;N131, 1; N131, 1 ;N147, t;N147, 1 ;N156, 1;
S: 1,N156, 1;N165, 1 ;N165, t;N131, 1 ;N131, 1 ;N165, t;N165, 1;
S: 2,C;V15;S99
<;: 2,r.!440, l;N220, 1;N880, 1 ;N440, 1 :NS23, 1 ;N262, 1 ;NS87, 1 ;tl294,1;N622, 1;
S: 2,N311, 1 ;N659, 1 ;N330, 1 ;NS23, 1 ;tJ262, 1 ;N65?,1 ;N330, 1;
S: 2,N440, 1 ;N220, 1 ;N880, 1 ;N440, 1 :NS23~ 1 ;N262, 1 ;N587, 1 ;t~294, 1 ;tJf,22, 1;
S: 2,N311, 1; N659, 1 ;tG30, 1 ;NS23, 1 ;N262, 1; N659, 1 ;N3JO, 1;
S: 2,N440, 1 ;N220, 1 ;N880, 1 ;N440, 1 :N523, 1 :N262, 1 ;N587, 1 ;N294, 1 ;N622, 1;
S: 2,N311,1;N659, t;N330, 1 ;NS23, 1;N262, 1 ;N659, 1 ;N330, 1;
S: 1,P
S: 2,P

T: C $D"$ 09 07 09 09 $D9$
Thi:; is an excerpt from the jazzed-up
vers.ian of 81Jmble Bee Boogie ..

C: X=O

R: wait for sound list to finish playing

*LOOP C: X=XH
J(X<lSl: LOOP
J: MENU

R:--- SPEECH ---

•SPEECH PR: UGE
D: U$(40);U1$(40>;U2$(40);U3$(40)
C: U$="Hello, I am the TEXAS HISTRUMElffS"
C: U1$="Hello, I a111 the HEY.AS !NSTRUMENTSt"
C: U2S="Home Computer. I can ~ay three hundr·ed •
C: U3$= 11 seve-nty-three different words."
T: $CS 09 09 .09 09

U .
V: U1$
T: $U2$
V: U2$
T: $U3$
V: U3$
J: MENU

R:--- FIN IS-~

*END
T: C
E:

R: This label ends the DEMO program.

t,rrrnDIX I. Erf70R CODES

As you develop and run a TI PILOT program, you may make scme mista~es that
result in error me~sctges. Th~se error messages can come from several ~ourc~~.

Err,Jr mes ·;ages m<'.Y be i ·;:ued by the p-Sy:tem as you u~e a specific utility
progra.m such as the Filer or Edi tor. Error messages may result from using the
Edi tor a.s you compose the ~ ta tement.s in a progr-:i:m. Then, tea, error t1essi1ges
may result when yo•J run a TI PILOT program.

If ·.n error is found as a program is running, the TI PILOT interpreter
displays a message identifying the kind of error· and displays the statement
containing the fault. The program continues with the next line.

The kind of error is identified by an error code and is reported as x-ERP.OR
where x is one of +.he error codes in the list below. Following the error
message, the statement contain.ing the error is displayed and a c2,ret (• l marks
the place in the statement where the error was found.

Here is a list of the TI PILOT error codes.

A
B
c
D
E
F
I
J
L
M
0
R
s
T
u
v
x

Arithmetic 2rror,. such as attempting to divide by zero.
Subscript out of bounds.
Invdlid Compute statement.
Disk error while reading a TI PILOT progr...m.
!~valid ~xpres3ion.
File input or output error.
Ill.e:ial function drgument.
Invalid jump d~stination.
Label space overflow.
Invalid modifier or conditioner.
Inva.lid op-code.
Out oJf memory space for .;.rrays or string5.
Compute synta.x error ar source file format error.
Variable table overflow.
Wrong type of expression for context.
Invalid variable name or expression synta:{ error.
Execution error; more than one c,pcode on :1. line

Tf!RE£-r1DIHH LI11ITED l,ARRAt!T'.'
HOME COMPUTER SOFTWAP.E MEDIA

Texas Instruments Incorporated extends this consumer warranty only to the
original consumer purcha5er.

WARRANTY CO•JERAGE

This t·Jarranty cove-r: the case components of the softwe\re pa.cka.ge. The
components include,-all ,:as~ette tap.2s, diskettes, plastics, contc,.iners, and
all other hardw.a.re contained in thi: software package ("the Hardware"). This
limited warranty does not extend to the pragri'.ms contained in the software
media and in the accompanying bool: materials ("the Progr:.ms"l.

The Hardware is warranted against malfunction due to defective materials or
construction. THIS l·JARRANTY IS VOID IF THE HARDWARE HAS BEEN DAMAGED BY
ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER SERVICE OR OTHER CAUSES NOT
ARISING OUT OF DEFECTS IN MATERIALS OR WORl(MANSHIP.

WARRANTY DURATION

The Hardware is warranted for a period of three months from the date of the
original purchase by the consumer.

WARRANTY DISCLAIMERS

AllY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LI MITE!) TO
THE IMPLIED WARRANTIES OF MERCHANTABILIT'f ANO FITNESS FOR A PARTICULAR
PURf'OSE, ARE LIMITED IN DURATION TO THE ABOVE THREE-MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE HARDWARE OR OTHER
INCIDENTAL DR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BV TliE
CONSUMER DR ANY OTHER usrn.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply to
you in those states.

LEGAL REMEDIES

This warranty ~ives you specific legal right~, and you may also have other
rights that vary from state to state.

PERFORMANCE 8V TI UNDER WARRANTY

During the above thrP.e-month warr.:-nty period, defecti•,e Hardware .iill be
replaced when it is returned post.;.ge prepaid to a Te,as Instruments S;,,rvic~
Facility listed below. The replacement Hardw~.re will be ,.iarranted hr three
months from dc:o.te of re-plac'2!1lent. Oth~r thiin t~,e ;:,a~t2.9e require111ent, no
charge will be made for replacement.

TI strongly recommends that you ir1sure tt:c H~r·dwcre for value prior to ;nail!ng.

?.?.:] '=: !35

TE:'.:,S rnsrnt.:r,rnT3 CQ;JSUME~ ':-[~'.'!CC: FACILITIES

'J~S£ !l2~ic~n!:a.:.
Texa; lristruments Service F,).cili ty
P.O. Bo: 2500
Lubbock, Texas 79408

c~n~diao e~siden!~.:.
Geophysical Services Incorporated
41 Shelley Road
Richmond Hi 11, Ontario, C.;nad,, L4CSG·1

Consumers in California and Or-=-gon may ,:ont.<1ct the following Te>:~·5 Instrument:;
offices for additional assistance or information.

TExas Instrument5 Consumer Service
831 South Douglas Street
El Segundo, California 90245
(213) 973-1803

Downloaded from www.ti99iuc.it

Texa~ Instruments Con~umer Servic~
6700 Southwest 105th
l{ristin Square, Suite 110
Bei\verton, Or·egon 97005
(503) 643-6759

IMPORTANT NOTICE OF DISCLAIMER REGARDING THE PROGRAMS

The following should be read and understood before purchasing ,nd/or using t.he
software media.

TI does not warrant that the Progr ams wi 11 be free from error or will meet thi,
specific requirement::; of +.he consumer. The ,:onsumer assumes C•Jmplete
responsibility for .?.ny deci:;ion made or -~ctions ta.ken ba5e,d on information
obtained using the Progr:\ms. Any statements "ff'1c1.de concerning the utility of
the Progr-:i.ms :lre not to be constr1Jed ~-s expre~.s or implied warranties.

TEXAS INSTRUMENTS MAKES NO WAP.P.1,NTY, EITHER EXPRESS OR IMPLIED, INCL1JDING GUT
!"OT LIMITED TO ANY IMPLIED IJARRANTIES OF MERCHAf!TAOIL!T'I ANO FITNESS FOR A
PARTICULAR PURPOSE' REGARDrnG THE PROGRAMS Atm MAKES ALL PROGRAMS AVAILABLE
SOLELY ON AN "AS rs· SASIS.

IN NO E~'ENT SHALL TEXAS INSTRUMENTS BE LIABLE TD ANYONE FDR SPECIAL,
COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING
OUT OF THE PURCHASE OR USE OF THE PROGRAMS AND THE SOLE AND EXCLUSIVE
LIABILITY OF TEXAS INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT
E:<CEED THE PURCHASE PRICE OF THE SOFTWARE MEDIA. MOREOIJER, TE.XAS INSTP.UMENTS
SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY f:Ir 1D WHATSOE'JER BY ANY OTI·IER PARTY
AGAINST THE USER OF THE PROGRAMS.

Some states do not allow the exclusion or limitation of implied warranties or
consE·'luentia.l deo.meo:ges, so the a.have limitations or e~clusions may not apply to
you in those states.

Pc.92 136
Downloaded from www.ti99iuc.it

Thanks to 99'er:

Ernie Pergrem
for the Scan of this Manual

Rework by:
TI99 Italian User Club in the year 2022
(info@ti99iuc.it)

Downloaded from www.ti99iuc.it

Printed in U.S.A.

Texas Instruments invented the integrated ctrcutt,
the microprocessor, and the microcomputer.

Being first is our tradition.

TEXAS INSTRUMENTS
INCORPORA T ED

	img_000000a
	img_000000b
	img_000001
	img_000002
	img_000003
	img_000004
	img_000005
	img_000006
	img_000007
	img_000008
	img_000009
	img_000010
	img_000011
	img_000012
	img_000013
	img_000014
	img_000015
	img_000016
	img_000017
	img_000018
	img_000019
	img_000020
	img_000021
	img_000022
	img_000023
	img_000024
	img_000025
	img_000026
	img_000027
	img_000028
	img_000029
	img_000030
	img_000031
	img_000032
	img_000033
	img_000034
	img_000035
	img_000036
	img_000037
	img_000038
	img_000039
	img_000040
	img_000041
	img_000042
	img_000043
	img_000044
	img_000045
	img_000046
	img_000047
	img_000048
	img_000049
	img_000050
	img_000051
	img_000052
	img_000053
	img_000054
	img_000055
	img_000056
	img_000057
	img_000058
	img_000059
	img_000060
	img_000061
	img_000062
	img_000063
	img_000064
	img_000065
	img_000066
	img_000067
	img_000068
	img_000069
	img_000070
	img_000071
	img_000072
	img_000073
	img_000074
	img_000075
	img_000076
	img_000077
	img_000078
	img_000079
	img_000080
	img_000081
	img_000082
	img_000083
	img_000084
	img_000085
	img_000086
	img_000087
	img_000088
	img_000089
	img_000090
	img_000091
	img_000092
	img_000093
	img_000094
	img_000095
	img_000096
	img_000097
	img_000098
	img_000099
	img_000100
	img_000101
	img_000102
	img_000103
	img_000104
	img_000105
	img_000106
	img_000107
	img_000108
	img_000109
	img_000110
	img_000111
	img_000112
	img_000113
	img_000114
	img_000115
	img_000116
	img_000117
	img_000118
	img_000119
	img_000120
	img_000121
	img_000122
	img_000123
	img_000124
	img_000125
	img_000126
	img_000127
	img_000128
	img_000129
	img_000130
	img_000131
	img_000132
	img_000133
	img_000134
	img_000135
	img_000136
	img_000137 - Copia
	img_000138

